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SUMMARY

In resting-state functional magnetic resonance imaging (rs-fMRI), Pearson correlation has traditionally been
the dominant method for constructing brain connectivity. This paper introduces an entropy-based connec-
tivity approach utilizing subject-level Z score normalization, which not only standardizes signal amplitudes
across subjects but also preserves interregional signal differencesmore effectively than Pearson correlation.
Furthermore, the proposed method incorporates cross-entropy techniques, offering an advanced perspec-
tive on the temporal ordering of signals between brain regions rather than merely capturing their synchroni-
zation. Experimental results demonstrate that the proposed subject-normalized cross-joint entropy achieves
superior classification accuracy in schizophrenia, mild cognitive impairment, and autism spectrum disorder,
outperforming the conventional normalized correlation method by approximately 4%, 6%, and 7%, respec-
tively. Additionally, the observed performance improvementmay be attributed to changes in the symmetry of
functional connectivity between brain regions—an aspect often overlooked in traditional functional connec-
tivity analyses.

INTRODUCTION

Brain connectivity, as delineated in previous research,1 encom-

passes the coordinated activity patterns among distinct brain re-

gions either during task performance or during resting states,

thereby unveiling temporal synchronicity among these regions.

Within the field of neuroscience, particularly in the realm of brain

network theory, numerous investigations have substantiated the

pervasiveness of such connectivity. Brain network theory posits

that neural elements within the brain are interconnected through

intricate network architectures, giving rise to functional networks

capable of dynamically modulating their connectivity patterns

during cognitive engagements or states of rest. A prototypical

example of such a functional network is the default mode

network (DMN),2 whose activity of the DMN is purportedly least

pronounced during cognitive tasks andmost pronounced during

resting state.3 The term ‘‘resting state’’ denotes an individual’s

conscious state devoid of specific tasks or external stimuli, dur-

ing which the brain remains notably active, fostering interre-

gional interactions. Research underscores the pivotal role of

the resting state in brain function, encompassing contributions

to cognitive regulation, introspective processes, and self-refer-

ential cognition.4

Since brain connectivity serves as fundamental constituents of

brain networks, they constitute the cornerstone for comprehend-

ing their essence. Typically, brain networks of individuals afflicted

with brain disorders manifest notable disparities when juxta-

posed with those of healthy counterparts. The distinctions are

statistically discernible in the inter-regional connections within

the brain, thereby offering prospects for adjunctive diagnosis of

brain pathologies. Various neuroimaging modalities have been

employed by researchers to delineate brain region connectivity,

including positron emission tomography (PET),5 electroencepha-

lography (EEG),6 magnetoencephalography (MEG),7 and func-

tional magnetic resonance imaging (fMRI).8 Notably, resting-

state fMRI (rs-fMRI) has emerged as a pivotal instrument for

investigating brain connectivity, owing to its inherent advantages

such as task-free acquisition, absence of ionizing radiation, and

high spatial resolution.

When utilizing rs-fMRI data for the construction of brain con-

nections, researchers typically extract blood-oxygen-level-

dependent (BOLD) signals, from regions of interest (ROIs) and

compute the Pearson correlation coefficient between them to

quantify inter-brain connectivity. The Pearson correlation coeffi-

cient assesses the synchronicity of signals, representing the de-

gree of similarity between two signal waveforms over time. In

addition to the Pearson correlation coefficient, methodologies

such as effective connectivity (EC)9–11 and dynamic causal

modeling (DCM)12–14 are employed for brain area connectivity

analysis. In recent years, entropy analysis,11,15 as an emerging

approach in brain signal analysis, has gained traction in rs-

fMRI studies. Particularly, the cross-entropy method delineates
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changes in informationwithin brain regions by gauging the extent

of signal disarray. Comparative to the Pearson correlation coef-

ficient, entropy-based brain connectivity offers a novel perspec-

tive for discerning the independence and asynchrony among

time series. The perspective is that, cross-entropy can differen-

tiate between orthogonal and independent signals, thereby

providing a valuable supplement to the limitations of the Pearson

correlation coefficient. On the other hand, the Pearson correla-

tion coefficient is used to determine whether two signals are syn-

chronous. If the signals are not synchronized, further analysis be-

comes limited.

While the utilization of entropy methods in brain connectivity

research is on the rise, current studies predominantly emphasize

single entropy analyses,16–20 and the potential benefits of em-

ploying cross-entropy21–25 in the context of brain connectivity

remain inadequately explored. Research has substantiated the

distinctive impact of employing entropy-based connectivity

methods in disease classification,26 yet a comprehensive

assessment of cross-entropy’s efficacy in constructing brain

networks is still lacking. Moreover, a myriad of approaches exist

for implementing cross-entropy, encompassing information en-

tropy, fuzzy entropy, Kolmogorov entropy, permutation entropy,

and other single entropy calculation methodologies,27 alongside

joint entropy, conditional entropy, divergence, and other cross-

entropy calculation techniques.28,29 Hence, the exploration of

optimal entropy calculation methods, including various forms

of cross-entropy, holds paramount importance for informing

and enhancing brain disease classification endeavors.

Regardless of whether employing Pearson correlation or en-

tropy methods, normalizing BOLD time series constitutes a

crucial step in constructing brain area connectivities. Normaliza-

tion serves to standardize signals to a uniform scale andmitigate

the adverse impact of outliers on time series computations. One

commonly utilized normalization technique is the Z score

method,30 which standardizes signals to a mean of 0 and a vari-

ance of 1. For instance, the Pearson correlation coefficient can

be interpreted as the correlation between signals subsequent

to Z score normalization. Additionally, linear normalization31 rep-

resents another prevalent normalization approach. For example,

in the calculation of information entropy for discrete signals,

scaling the signal to the interval between 0 and 1 facilitates the

computation of signal probability distribution. However, both Z

score normalization and linear normalization inevitably eliminate

amplitude differences inherent in the brain region’s own signals,

which may sometimes encapsulate group-specific information

differences. Specifically, after preprocessing, the signal values

from all ROIs can be obtained for each subject. Since the

same brain atlas is used for extraction, the location of each

Figure 1. The average classification accuracy of each normalized cross-entropy (including correlation) across the three diseases of SCZ,

MCI, and ASD is determined by combining 5 normalization methods and 10 cross-entropy measures, respectively

(A) SCZ classification accuracy.

(B) MCI classification accuracy.

(C) ASD classification accuracy.
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ROI remains consistent across subjects. Applying Z score

normalization to the ROIs ensures that signals from the same

ROI in different subjects can be compared on a standardized

scale. However, it is important to note that the amplitude of the

signals from the same ROI may still vary across subjects.

To address the aforementioned challenges, this study intro-

duces a brain entropy connectivity method grounded in subject

normalization, with the objective of enhancing the investigation

into classification disparities between brain disease and normal

controls (NC) group. The contributions of this research are as fol-

lows. Firstly, to our best knowledge, the subject normalization

method proposed in this paper has not been reported in the ex-

isting literature. Its advantage lies in its ability to not only address

signal outliers but also preserve the amplitude information of

each ROI region effectively. Secondly, the classification algo-

rithm in this paper combines the new normalization method

with an existing cross-entropy approach. For classifying neuro-

logical disorders, this new combination demonstrates better

overall performance compared to the combination of existing

normalization and connectivity algorithms. Finally, utilizing the

proposed combination, strong symmetry in function connectivity

was observed in brain disease, which may be a contributing fac-

tor to the improved classification performance.

In our experiment, we conducted classification tasks involving

mild cognitive impairment (MCI), schizophrenia (SCZ), and autism

spectrum disorder (ASD) alongside a control group. The

three types of diseases are all believed to be closely related to

abnormalities in both functional and structural connections of

brain networks, and many researchers3,15,17,19,26 have already

made significant contributions in this area. To ensure experiment

reproducibility, fMRI data for the aforementioned disorders were

sourced from publicly available databases. Evaluated entropy

calculation methods encompass information entropy,32 conditio-

nal entropy,28 approximate entropy,18,33,34 sample entropy,19,35,36

fuzzy entropy,20,37 and permutation entropy,38 in addition to distri-

bution entropy,39 spectral entropy,40,41 andKolmogorov entropy.42

Cross-entropy methodologies include mutual information

entropy,43,44 cross-conditional entropy,22,45 cross-approximate

entropy,21,46,47 cross-sample entropy,23,24,48,49 cross-fuzzy entro-

py,25,50 cross-permutation entropy,51 cross-distribution entropy,52

Figure 2. Histogram depicting the average running times (unit:s) of different normalized cross-entropy methods obtained across three

pathologies

Figure 3. Within ASD, MCI, and SCZ, the ROIs with high-weighted connectivities to PCC are shown
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cross-spectral entropy,53 andcross-Kolmogoroventropy.53 Exper-

imental findings indicate that the proposed subject-normalized

cross-joint entropy (CJE) yields superior classification accuracy.

Under identical conditions, CJE outperforms Pearson correlation

in the classification of SCZ, MCI, and ASD by approximately 4%,

6%, and 7%, respectively, representing a 7%, 12%, and 5%

improvement over traditional normalized entropy methods,

correspondingly.

RESULTS

Classification performance
This section presents the classification outcomes obtained by

integrating normalization with cross-entropy and correlation

across three brain disease databases. Given the asymmetry of

the cross-approximate entropy and cross-conditional entropy

methods (wherein the entropy of the m-th and n-th ROIs is not

equivalent to the entropy of the n-th and m-th ROIs), fully con-

nected features are employed for classification. Additionally,

the upper triangular feature classification of the entropy connec-

tion matrix is adopted for other methods. The subsequent anal-

ysis will delve into the classification performance of the pro-

posed method within each database. To ensure the reliability

of the results, we included the classification outcomes of K-

Nearest Neighbors(KNN) and random forest (Figures S1 and

S2). Additionally, we provided the confusion matrices, preci-

sion-recall rates (Tables S1–S3), and the receiver operating char-

acteristic (ROC) curves (Figures S3–S5) for all three classifiers.

Figure 1 depicts the classification outcomes resulting from

various combinations of normalization and cross-entropy/correla-

tionmethods.Furthermore, themeanvalueofcross-entropywithin

each normalization method (NMean) and the mean value of

normalization within each cross-entropy measure (EMean) are

also provided. In SCZ (see Figure 1A), the approach combining

Sub_N and CJE yielded the highest classification accuracy of

75.0%. Notably, for the CJE cross-entropy method, it surpassed

other cross-entropyandcorrelationmethodsacross the remaining

four normalization methods (apart from ROI_N). Additionally, for

theSub_Nnormalizationmethod, it attained the highest classifica-

tionaccuracyamong the six brain connectionmethods:CJE,Corr,

CApE,CCE,CDE,andCFE.Theaverageclassificationaccuracyof

Sub_N in each cross-entropy measure exceeded that of other

normalization methods, and similarly, the average classification

accuracy of CJE within each normalization method surpassed

that of other entropy methods.

InMCI (seeFigure 1B), theapproachcombiningSub_NandCJE

attained a notable classification accuracy of 70.2%. Regarding

the CJE method, except for ROI_N and ROI_NM, it secured the

second-highest classification accuracy among the remaining

three normalizationmethods. Furthermore, for the Sub_Nnormal-

ization method, it achieved the first or second-highest classifica-

tion accuracy in CJE, Corr, CDE, CFE, CPE, and CSaE. The

average classification accuracy of Sub_N in each cross-entropy

measure surpassed that of other normalization methods, while

the average classification accuracy of CJE in each normalization

method ranked second, closely following the CPE method.

In ASD (see Figure 1C), the approach combining Sub_N and

CJE also yielded a notable classification accuracy of 65.6%.

Regarding theCJEmethod, except for ROI_NM, it did not achieve

the first or second-highest classification accuracy among the

other four normalization methods. However, for the Sub_N

normalization method, it achieved the first or second-highest

classification accuracy in CJE, Corr, CCE, CFE, and CPE. The

average classification accuracy of Sub_N in each cross-entropy

measure closely followed Sub_NM, ranking second. Similarly,

the average classification accuracy of CJE in each normalization

method closely matched the CFE method, also ranking second.

Computational complexity
To assess the computational complexity of different methods,

this section presents the running time of each cross-entropy/

correlation method combined with normalization in Figure 2,

averaged across the three databases. To ensure fairness, all

connections in the matrix are calculated regardless of whether

the upper and lower triangles of the connection matrix are sym-

metrical (cross-approximate entropy, cross-conditional entropy

asymmetry). As depicted in Figure 2, for each normalization

method, the calculation time does not vary significantly regard-

less of the brain connection calculation method used, although

the calculation time of ROI_N is slightly longer. Furthermore,

for each connection method, the calculation time of CJE is the

shortest, even less than that of the Corr method.

Weight analysis of entropy connectivities
The posterior cingulate cortex (PCC) is regarded as one of the

central nodes of the entire brain during the resting state.54 We

employed the ReliefF55 and Chi-square (Chi2)56 methods to

compute the relationship between the PCC and various crucial

brain regions. The connectivity weight primarily focuses on the

results of Sub_N+CJE and ROI_N + Corr (i.e., Pearson correla-

tion). Figure 3 illustrates the brain regions with high weights be-

tween ASD, MCI, SCZ, and the PCC, where the ROIs are derived

from the AAL116 template. The high-weighted ROIs are the top

10 ROIs with the highest weights selected from all, denoted in

red. The weights are determined through calculations using the

ReliefF55 and Chi-square (Chi2)56 methods. The coordinates X,

Y, and Z correspond to the Montreal Neurological Institu-

te(MNI)space. It is evident from the figure that regardless of the

method used to calculate the weights, the brain regions identi-

fied by CJE differ from those associated with Pearson correla-

tion. For instance, considering ASD, the identical brain regions

obtained by both methods include Cerebellum_4–5 and Cere-

bellum_6 in the left hemisphere and Cerebellum_8 in the right

hemisphere, while the remaining regions differ.

Figure 4. Sub_N+CJE and Pearson connectivity weights in SCZ

(A) SCZ Connection weights calculated by ReliefF under Sub_N+CJE method.

(B) SCZ Connection weights calculated by Chi2 under Sub_N+CJE method.

(C) SCZ Connection weights calculated by ReliefF under Pearson correlation method.

(D) SCZ Connection weights calculated by Chi2 under Pearson correlation method.
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Figure 4 illustrates the Sub_N+CJE and ROI_N + Corr (i.e.,

Pearson correlation) connectivity weight diagram in SCZ, where

the ROIs are from AAL116 and weights are calculated from Re-

liefF and Chi2. In the first column, the positions of the connectiv-

ities with the top 100 weights in the brain are represented, as

visualized by BrainNet Viewer (https://www.nitrc.org/projects/

bnv/); the second column displays the entropy connectivity

weight matrix, where weight values have been normalized to

range between 0 and 1, and rows and columns are arranged ac-

cording to brain regions, including frontal lobe (FRO), insula

(INS), limbic (LIM), occipital lobe (OCC), parietal lobe (PAR),

subcortical (SUB), temporal lobe (TEM), cerebellum (CER), and

vermis volume (VER); the third column illustrates the connectivity

diagram with the top 100 weights, depicted using Circos (http://

www.circos.ca/software/). The brain regions in the diagram are

further divided into left and right hemispheres. In Figures (A)

and (B), the brain connectivities are established using Sub_

N+CJE, and the weight results obtained from relief and Chi2

methods exhibit similarity. High-weighted ROI connectivities

are predominantly concentrated in the SUB area. Specifically,

it is concentrated in the entropy connectivity between the

caudate nucleus and other ROIs, and expresses partial symme-

try in the left and right hemispheres. In Figures (C) and (D), the

brain connectivities are established using Pearson correlation.

The weight calculation results from both relief and Chi2 methods

do not show the band-shaped area depicted in the second col-

umn of (A) and (B), and there is also a lack of symmetry in the cir-

cular connection diagram in the third column.

Figure 5 illustrates the Sub_N+CJE and Pearson correlation

connectivity weight diagram in MCI. In Figures (A) and (B), the

connectivities established by Sub_N+CJE also exhibit similar-

ities in the two weight calculation results of ReliefF and Chi2.

High-weighted ROI connectivities are predominantly concen-

trated in the cerebellum (CER) area. Conversely, the Pearson

correlation method (Figures 5C and 5D) did not identify brain re-

gions with significantly high weights.

Figure 6 illustrates the Sub_N+CJE and Pearson correlation

connectivity weight diagram in ASD. Similar to the findings in

Figures 4 and 5, the high-weighted connections in Figures (A)

and (B) exhibit more pronounced regional characteristics,

with higher weights observed in the ROIs connected to the

CER and VER. Conversely, the high-weighted ROIs identified

by Pearson correlation in Figures (C) and (D) are more evenly

distributed.

Symmetry analysis of entropy connectivities
Note that the functional connectivity results obtained using the

methods outlined in the previous section revealed strong sym-

metry in certain brain regions, a pattern rarely observed in prior

functional connectivity analyses. Therefore, this section pre-

sents additional experimental results to further characterize

this symmetry. The proportion of symmetric entropy connections

in the three diseases is calculated. Figure 7 illustrates the propor-

tion of symmetric connections in the ROI nodes of Sub_N+CJE in

SCZ, the horizontal axis represents the brain regions corre-

sponding to the 116ROIs from the automatic anatomical labeling

(AAL) brain atlas, while the vertical axis indicates the proportion

of symmetric connectivities relative to all connections for each

ROI node. The detailed correspondence between ROI and brain

region can be found in Table S4 of the supplementary informa-

tion. As shown in the figure, several brain regions in SCZ exhibit

nodes with high symmetry under three different p values.

Notably, the caudate nucleus node in the SUB brain region has

the highest proportion of symmetric connections, approximately

99%, across all p values, while nodes in other brain regions have

proportions below 80%. Figure 8 presents the symmetry propor-

tions of ROI connections for Sub_N+CJE nodes in MCI, where

the CER and VER brain regions, both belonging to the cere-

bellum, have the greatest number of nodes with higher symmetry

proportions. Figure 9 depicts the proportion of symmetric con-

nections in the ROI nodes of Sub_N+CJE in ASD. In this case,

nodes with higher symmetry are also found in the CER and

VER regions of the cerebellum, with the proportion of symmetric

connections in other brain regions being less than 25% across

the three p values.

Graph theory analysis of entropy connectivity
In this subsection, the Sub_N+CJE method is applied to

construct brain connectivity maps for three diseases: SCZ,

MCI, and ASD. Initially, ReliefF is utilized to compute the weight

of each entropy connectivity. The entropy connectivities with the

top 100 weights are then selected and normalized between

0 and 1. Subsequently, connectivities with entropy values below

a threshold are retained to form the graph network, where the

threshold is set to 1/3. The graph features listed in experimental

methods and classification section are extracted from the

network. Following feature extraction, a two-sample t test is con-

ducted with a significance level of p = 0:05. Table 1 shows the

results of SCZ. Among its 7 features, except global efficiency

and node strength, which showed results of p< 0.05, the other

features were all p< 0.01. Table 2 shows the results of MCI, in

which global efficiency, node strength and participation coeffi-

cient showed no difference, p> 0:05, and the remaining four fea-

tures all showed p< 0:05. Table 3 shows the results of ASD, and

its 7 features all show differences at the p< 0:05 level.

DISCUSSION

This paper utilizes rs-fMRI data to analyze brain region connec-

tivity, with the goal of distinguishing between disease and

healthy control groups. While signal correlation-based meth-

ods, such as the Pearson correlation coefficient, are widely

used for quantifying inter-node connectivity, entropy-based

methods have gained traction in recent years due to their ability

Figure 5. Sub_N+CJE and Pearson connectivity weights in MCI

(A) MCI Connection weights calculated by ReliefF under Sub_N+CJE method.

(B) MCI Connection weights calculated by Chi2 under Sub_N+CJE method.

(C) MCI Connection weights calculated by ReliefF under Pearson correlation method.

(D) MCI Connection weights calculated by Chi2 under Pearson correlation method.
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to address some limitations of correlation methods. However,

regardless of the connectivity analysis method employed, pre-

processing of raw node signals is essential. Traditional ROI-

based normalization methods may overlook crucial amplitude

information, which could be pivotal in elucidating group differ-

ences. Moreover, while some studies have explored entropy-

based methods across various diseases, systematic compara-

tive analyses are lacking. Therefore, this study focuses on

exploring an effective cross-entropy calculation method to un-

cover commonalities and differences across different disease

contexts. We employed subject normalization combined with

ten entropy-based brain region connectivity methods to

compute and analyze data from three diseases, aiming to iden-

tify reliable cross-entropy features to enhance classification ac-

curacy and explore variations between brain regions. Through

this approach, we aim to offer new insights into the intricacies

of brain function and its implications in disease.

In traditional Pearson correlation analysis, the impact of signal

amplitude is often disregarded. This method typically standard-

izes themean of two signals to 0 and the variance to 1, assessing

connectivity on a standardized scale. However, variations in

signal amplitude exist across different brain regions due to

task engagement or spontaneous activity during the resting

state, which may be altered in brain diseases. To address this,

our study proposes a subject normalization method that pre-

serves relative signal magnitude when evaluating brain region

connectivity changes. Compared to traditional methods, it offers

greater signal differentiation and potential for enhanced classifi-

cation accuracy.

Additionally, the Pearson correlation coefficient, while

commonly used, has limitations in capturing signal relationships.

It may overlook similarity between signals, potentially leading to

inaccurate assessments of connectivity. To address this issue,

our study employs the cross-entropy method. For example,

when computing cross-joint entropy between signals, a smaller

entropy value between a sinusoidal signal and a cosine signal in-

dicates the relevance of signal relationships, instead of mere a

phase difference. Moreover, the Pearson correlation coefficient

can assess whether two signals are synchronized, but it cannot

provide further insight when the signals are not synchronized. In

contrast, cross-joint entropy accounts for both synchronization

and independence. When the signals are synchronized, the en-

tropy is lower due to reduced uncertainty. When the signals

are not synchronized, they may still exhibit orthogonality, mean-

ing they are uncorrelated but not entirely independent. In such

cases, while the entropy is relatively high, it does not reach its

maximum. If the signals are fully independent, there is no form

of dependence or shared information between them, resulting

in the maximum entropy value.

During implementation, we applied five different normalization

techniques to rs-fMRI data, each preserving varying degrees of

activity differences and influencing outcomes differently. To

overcome limitations of traditional correlation approaches, we

utilized various cross-entropy methods to establish brain region

connectivity and employed the features for classification.

Comparison of normalization and cross-entropy
The experimental findings presented in this article underscore

the effectiveness of subject normalization methods, particularly

subject Z score normalization and subject linear normalization,

in achieving the highest classification accuracy among the three

diseases studied. Conversely, the classification results of ROI

normalization techniques, such as ROI Z score normalization

and ROI linear normalization, are comparatively lower, and in

some cases, even lower than the unnormalized results. For

example, when employing the cross-approximate entropy

method in MCI, the classification outcomes obtained without

normalization notably surpass those obtained with ROI normali-

zation. This indicates that valuable information inherent in the

original signal, such as amplitude information, contributes to

classification accuracy but is lost during ROI normalization. In

contrast, subject normalization methods retain this crucial infor-

mation. Furthermore, subject Z score normalization emerges as

superior to subject linear normalization, achieving the highest

mean classification accuracy in SCZ and MCI, surpassing other

normalization methods. While it ranks second in ASD, its perfor-

mance remains comparable to that of subject linear normaliza-

tion. Overall, in comparison to existing combination algorithms,

the new method proposed in this paper ranks among the top

three in terms of classification accuracy for the three diseases,

whereas the existing algorithms rank lower. Although some com-

bination algorithms achieve high rankings, this is primarily due to

the integration of the existing cross-entropy method with the

subject normalization approach introduced in this paper, further

demonstrating the superiority of the subject normalization.

The concept of cross-entropy, elaborated upon in Table 4 and

the ‘‘Related Works on Entropy’’ section of this paper, serves as

a valuable tool for analyzing information interaction in brain

Figure 6. Sub_N+CJE and Pearson connectivity weights in ASD

(A) ASD Connection weights calculated by ReliefF under Sub_N+CJE method.

(B) ASD Connection weights calculated by Chi2 under Sub_N+CJE method.

(C) ASD Connection weights calculated by ReliefF under Pearson correlation method.

(D) ASD Connection weights calculated by Chi2 under Pearson correlation method.

Figure 7. The proportion of ROI symmetric connectivities is pre-

sented for Sub_N+CJE across different significance levels in SCZ
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connectivity. While single entropy is effective at analyzing disor-

dered changes in time series, it lacks the capacity to express al-

terations in brain area connections. Hence, cross-entropy is pro-

posed to examine the brain’s information interaction from a

connectivity or correlation perspective. The diverse cross-en-

tropy classification accuracy rates presented in this study illus-

trate that the cross-joint entropy method outperforms other

methods in classifying the three diseases. Specifically, in SCZ,

cross-joint entropy achieves the highest mean classification ac-

curacy, ranking first; in MCI, it ranks second, similar to the first

cross-permutation entropymethod; in ASD, it also ranks second,

marginally lower than the first cross-fuzzy entropy by 2.1%.

However, cross-permutation entropy and cross-fuzzy entropy

do not exhibit higher classification accuracy in other diseases.

Furthermore, in terms of average running time, cross-joint en-

tropy demonstrates significantly faster operation compared to

other cross-entropy methods or related approaches, ensuring

higher operational efficiency.

Based on the foregoing analysis, this paper advocates for the

combination of subject Z score normalization and cross-joint en-

tropy as a superior approach for constructing brain entropy con-

nections. Experimental findings indicate that this combination

achieves classification accuracies of 75.0% (ranked 1st out of

50 methods, 1/50), 70.2% (4/50), and 65.6% (5/50) in SCZ,

MCI, and ASD diseases, respectively. Although these figures

are slightly lower than those achieved by cross-approximate en-

tropy and cross-spectral entropy with subject linear normaliza-

tion in the MCI disease database and ASD, it is noteworthy

that the methods did not consistently demonstrate good classi-

fication accuracy across all conditions. For instance, subject

linearly normalized cross-approximate entropy achieved a clas-

sification accuracy of 71.6% in MCI but only 56.1% in ASD.

Entropy connectivity analysis for brain diseases
In SCZ, our investigation into connectivities established through

subject Z score normalization and cross-joint entropy revealed

significant patterns highlighted by ReliefF and Chi-square tests.

Figure 9. The proportion of ROI symmetric connectivities is pre-
sented for Sub_N+CJE across different significance levels in ASD

Figure 8. The proportion of ROI symmetric connectivities is pre-

sented for Sub_N+CJE across different significance levels in MCI

Table 1. Graph features of brain connectivity network

constructed by Sub_N+CJE in SCZ

Features

Group (mean ±

standard deviation)

t value p valueSCZ NC

Global

efficiency

0.0226 ±

0.0165

0.0286 ±

0.0161

�2.2304 <0.05*

Modular 0.3207 ±

0.1442

0.1967 ±

0.0719

6.5101 <0.01**

Isogamy �0.6368 ±

0.1859

�0.7868 ±

0.0731

6.3438 <0.01**

Average

traffic

0.0420 ±

0.0284

0.0233 ±

0.0123

5.1235 <0.01**

Node

strength

0.5605 ±

0.2399

0.6489 ±

0.2373

�2.2306 <0.05*

Clustering

coefficient

0.0635 ±

0.0505

0.0972 ±

0.0540

�3.8771 <0.01**

Participation

coefficient

0.0434 ±

0.0285

0.0598 ±

0.0292

�3.4069 <0.01**

Note: *indicates p< 0:05, **indicates p< 0:01

Table 2. Graph features of brain connectivity network

constructed by Sub_N+CJE in MCI

Features

Group (mean ±

standard deviation)

t value p valueMCI NC

Global

efficiency

0.0184 ± 0.0113 0.0214 ±

0.0146

�0.9127 0.36

Modular 0.5110 ± 0.0701 0.4140 ±

0.1088

4.2399 <0.01**

Isogamy �0.4763 ± 0.1346 �0.5479 ±

0.1417

2.0724 <0.05*

Average

traffic

0.0606 ± 0.0225 0.0397 ±

0.0185

4.0635 <0.01**

Node

strength

0.5350 ± 0.2192 0.5636 ±

0.2926

�0.4418 0.66

Clustering

coefficient

0.0321 ± 0.0255 0.0465 ±

0.0319

�2.0001 <0.05*

Participation

coefficient

0.0268 ± 0.0186 0.0350 ±

0.0243

�1.5161 0.13
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Notably, substantial disparities emerged in connectivities be-

tween the subcortical region and various cortical regions, such

as the frontal lobe, limbic system, parietal lobe, and cerebellum.

Particularly strikingwere connectivities involving the caudate no-

des, which displayed substantial weighting and demonstrated

robust symmetry between the left and right hemispheres. These

findings align with previous research indicating structural dispar-

ities in the prefrontal lobe among individuals with schizophrenia,

correlating with dysfunctions in cognitive control, decision-mak-

ing, and emotion regulation.57 Moreover, the observed symmet-

rical high-weighted connections, especially those linking other

cortical regions with the caudate nucleus, align with existing

research on hemispheric specialization in schizophrenia pa-

tients. Specifically, findings suggest weakened left hemisphere

specialization and strengthened right hemisphere specializa-

tion,58 indicative of connectivity disparities in both hemispheres

of SCZ patients. The identified symmetry in caudate nucleus

connections holds significance in elucidating SCZ pathology.

Additionally, our study revealed that connections involving the

caudate nucleus exhibited greater feature weights, supporting

genetic inquiries implicating dopamine-related mechanisms in

SCZ onset,59 with the caudate nucleus playing a pivotal role as

a dopaminergic synapse distribution area.60 Notably, these in-

sights were not gleaned through Pearson correlation analysis.

In our investigation of MCI, notable features emerged in con-

nectivities established through the amalgamation of subject Z

score normalization and cross-joint entropy, predominantly

observed in 26 cerebellar nodes. Remarkably, similar patterns

were evident when analyzing connectivities with the PCC nodes,

highlighting the cerebellum’s pivotal role in cognitive functions.

Traditionally recognized for its involvement in movement coordi-

nation, the cerebellum has often been sidelined in cognitive

studies,61,62 possibly due to the misconception that ROI normal-

ization diminishes differences in cerebellar nodes. However,

mounting evidence underscores the cerebellum’s intricate

involvement in cognitive and emotional processing.63 Functional

MRI analyses suggest that the cerebellum regulates cognition

and emotion similar to its role inmotor control, presenting poten-

tial avenues for neuropsychiatric interventions. Additionally, our

findings revealed an abundance of high-weighted connectivities

within the internal connectivities of the frontal lobe, particularly

prevalent in the left hemisphere. Previous research on MCI has

emphasized enhanced functional connectivity in the frontal

lobe among patients, notably in the left frontal lobe, which ex-

hibits higher overall functional connectivity.64 Studies employing

synchronized rhythmic brain stimulation have shown a preferen-

tial increase in frontal lobe activity following stimulation,65 lead-

ing to rapid improvements in working memory performance.

Moreover, investigations into the topology of hemispheric white

matter networks in Alzheimer’s disease (AD) and MCI patients

have identified significant group disparities primarily in the left

hemisphere,66 suggesting its crucial role in abnormal topological

asymmetry among patients. These findings collectively deepen

our understanding of brain connectivity disparities in MCI

pathology.

In ASD, our analysis unveiled disparities in feature weights

across the entire brain connectivity domain, signaling wide-

spread connectivity alterations rather than isolated changes in

specific brain regions. Particularly notable were the significant

differences observed in the cerebellum, where connectivity ex-

hibited higher weights predominantly, especially in connectivity

with the PCC. While previous research has primarily concen-

trated on findings in the frontal and temporal lobes,67 attributing

to their integral roles in high-level cognitive functions, such as

those in the medial prefrontal cortex, posterior cingulate cortex,

and subparietal cortex. Notably, global hypoconnectivity within

lobules and sensorimotor regions, particularly involving the

medial prefrontal cortex and posterior cingulate cortex, has

been implicated in social impairment.68 Studies utilizing inde-

pendent component analysis (ICA) and ROI-based seed

points have reported underconnectivity in regions such as the in-

sula (saliency network) and amygdala (medial temporal lobe

network).69 Furthermore, investigations into the cerebellum

have unearthed enhanced local connection patterns among

adolescent ASD patients,70 further substantiating the connectiv-

ity abnormalities observed in our analysis. Moreover, studies

leveraging graph theory to explore various rs-fMRI studies in

ASD patients have highlighted instances of both over- and un-

der-connectivity, emphasizing the complexity of whole-brain

connectivity alterations in ASD and the challenge in identifying

overarching trends or patterns of change.71 Recent research

corroborated these findings by demonstrating widespread

whole-brain functional alterations in ASD patients, with differ-

ences evident across nearly all brain regions.72 These observa-

tions align with our findings, suggesting that ASD patients exhibit

a more dispersed pattern of brain network connectivity.73

Consequently, future research on ASD may benefit from a

more comprehensive focus on understanding whole-brain con-

nectivities and their implications for the disorder.

This study conducted a comprehensive statistical analysis of

the impact of three brain disorders on the symmetry of brain con-

nectivity patterns. In typical brain function, information exchange

is facilitated by the coordination of multiple brain regions. When

brain disorders occur, they disrupt this exchange, and these dis-

ruptions can be statistically observed as significant differences

Table 3. Graph features of brain connectivity network

constructed by Sub_N+CJE in ASD

Features

Group (mean ±

standard deviation)

t value p valueASD NC

Global

efficiency

0.0121 ± 0.0101 0.0241 ±

0.0144

�4.7844 <0.01**

Modular 0.6182 ± 0.1070 0.5601 ±

0.1367

2.3379 <0.05*

Isogamy �0.4022 ± 0.1294 �0.3340 ±

0.1506

�2.4003 <0.05*

Average

traffic

0.0681 ± 0.0338 0.0955 ±

0.0345

�3.9752 <0.01**

Node

strength

0.3948 ± 0.1840 0.5841 ±

0.2363

�4.4139 <0.01**

Clustering

coefficient

0.0093 ± 0.0163 0.0262 ±

0.0272

�3.7521 <0.01**

Participation

coefficient

0.0176 ± 0.0139 0.0329 ±

0.0174

�4.7950 <0.01**
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Table 4. Common single entropy and cross-entropy

Type Name Expression

Single entropy Information entropy HIðuÞ = � P
m
pðuðmÞÞlogðpðuðmÞÞÞ, where uðmÞ is the element

of the time series vector u, m = 1; 2;. are the sampling

points, and pð$Þ represents the probability

Single entropy Conditional entropy28,45
HcðuÞ = � P

d�1

pðu0
d�1Þ

P
mjd� 1

p
�uðmÞ
u0
d� 1

�
log p

�
uðmÞ
u0
d�1

�
, where pðu0

d�1Þ

represents the joint probability of mode u0
d�1 after d dimensional

phase space reconstruction, and p
�uðmÞ
u0
d�1

�
represents the

probability of sample uðmÞ under a given mode u0
d�1

Single entropy Approximate entropy34 HaðuÞ = fdðrÞ+fd+1ðrÞ,where r represents the similarity tolerance

threshold, fdðrÞ = ð1 =ðT �d +1ÞÞPT �d+1
i = 1 logðCd

i ðrÞÞ , Cd
i ðrÞ is the

approximate ratio, T is the number of data sampling points in the time series

Single entropy Sample entropy36 HsaðuÞ = ln f0dðrÞ � ln f0d+1ðrÞ,where

f0dðrÞ = ð1 =ðT � d + 1ÞÞPT �d
i = 1 C

0d
i ðrÞ, C0d

i ðrÞ = numðd0Þ =ðT � dÞ, d0

represents the distance between corresponding position elements

between subsequences after reconstructing u

Single entropy Fuzzy entropy37 HFðuÞ = ln f00dðh; r0Þ � ln f00d+1ðh; r0Þ,

where f00dðh; r0Þ = ð1 =ðT �dÞÞPT �d
i = 1

 
1

T � d � 1

XT �d

j = 1;jsi
Dd

ij ðh; r0Þ
!
, r0

is the width, Dd
ij is the fuzzy membership degree, h is the gradient

Single entropy Permutation entropy38 HPðuÞ = � PT �ðd�1Þt
i = 1 pðiÞlog pðiÞ,where t represents the delay time,

and pðiÞ represents the probability of occurrence of the i-th

arrangement in sequence u

Single entropy Distribution entropy39
HDðuÞ = �

� 1

log M

�PM
m = 1 pm logðpmÞ,where m is the m-th

quantization interval, and M is the total number of quantization intervals

Single entropy Spectral entropy41 HseðuÞ = � log PðfmÞ, where fm is the m-th sample value

on the power spectrum, and PðfmÞ represents the energy

proportion of each frequency band

Single entropy Kolmogorov entropy42
K2ðuÞ = lim

r00/0
lim
d/N

1

t
ln

�
C00

dðr00Þ
C00

d+1ðr00Þ
�
, where r00 represents the

critical distance, C00
dðr00Þ is the associated integral

Cross-entropy Mutual information entropy44 HIðu;vÞ = HðuÞ+HðvÞ � Hðu;vÞ, where u and v represent

two different time series vectors respectively,

Hðu;vÞ = � PT
m = 1

PT
n = 1pðuðmÞ;vðnÞÞlog pðuðmÞ;vðnÞÞ

Cross-entropy Cross-conditional entropy28,45 HCCEðu;vÞ = � P
d�1

pðv0d� 1Þ
P

mjd� 1

pðuðiÞ��v0d�1Þlog pðuðiÞ��v0d�1Þ

Cross-entropy Cross-approximate entropy46 HCApEðu;vÞ = fd
ij ðrÞ � fd+1

ij ðrÞ, where fd
ij ðrÞ represents the degree

of approximation between the i-th sequence segment of the time

series vector u0 reconstructed by u and v and the j-th sequence segment of v0

Cross-entropy Cross-sample entropy48,49

HCSaEðu;vÞ = � ln
�AdðrÞ
BdðrÞ

!
,where AdðrÞ =

PT �d
i = 1 Ad

i ðrÞ
T � d

, Ad
i ðrÞ represents

the number of distances between corresponding samples of the

reconstructed vectors u0 and v0 in the d+ 1 dimensional phase space

that are less than or equal to the threshold r, Similarly, can be

obtained BdðrÞ, Bd
i ðrÞ is obtained from the d dimensional phase space

Cross-entropy Cross-fuzzy entropy50 HCFEðu;vÞ = ln fd 00ðrÞ � ln fd+1 00ðrÞ,

where ln fd 00ðrÞ = 1

T � d

XT �d

i = 1

 
1

N � d

XT �d

j = 1
Dd

ij

!
;Dd

ij represents

the fuzzy similarity between u0
i and v0j

Cross- entropy Cross-permutation entropy51 HCPEðu;vÞ = � PM
m = 0 pðdmÞlog pðdmÞ, where dm represents the m-th

arrangement of the reconstructed sequence from u and v

(Continued on next page)
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from normal control groups. If such differences manifest sym-

metrically in brain connectivity, it provides valuable insights

into how brain disorders affect neural communication patterns.

The findings of this study indicate that, in SCZ, symmetrical con-

nectivity disruptions were observed in the frontal lobe, limbic

system, occipital lobe, subcortical structures, temporal lobe,

and cerebellum, with the highest statistical value occurring in

the caudate nucleus within the subcortical structures. This sug-

gests that all nodes connected to the caudate nucleus are

affected by SCZ, consistent with the feature importance anal-

ysis, further reinforcing the hypothesis that the caudate nucleus

may be a critical locus for understanding SCZ. In MCI, while the

differences in connectivity symmetry between nodes were not

pronounced, the majority of nodes with higher proportions of

symmetrical connections were concentrated in the cerebellum.

This highlights the involvement of the cerebellum in cognitive

function and suggests that cerebellar function is compromised

in MCI patients. In ASD, a similar pattern was observed, with a

greater proportion of symmetrical connections concentrated in

the cerebellum, while asymmetrical connectivity differences

in other brain regions were minimal. The discovery of symmetri-

cal connection patterns for the three disorders, identified

through the Z score normalized association with CJE, exhibits

significant disparities when compared to the Pearson correlation

method. This implies that the approach presented in this paper

makes a distinctive contribution to brain disease classification

tasks.

To further elucidate the distinctions between disease and

normal control groups in the connectivity established by subject

Z score normalization and cross-joint entropy, we constructed

corresponding graph representations and extracted features

for statistical hypothesis testing. The results revealed that across

SCZ, MCI, and ASD groups, global efficiency, node strength,

clustering coefficient, and participation coefficient were all

significantly lower compared to the NC group (p < 0.05). This

suggests that the level of interactivity between nodes in the pa-

tient group was diminished relative to the NC group, signifying a

reduction in connectivity strength across different nodes within

the CJE brain entropy network among patients.

Overall, this paper proposes a cross-association entropy

method based on Z score normalization for calculating the con-

nections between brain regions. The advantage of this method is

validated through comparison with traditional approaches, lead-

ing to the following conclusions. (1) The subject-normalized

cross-association entropy can serve as a candidate method

for constructing brain connectivity analyses. Compared to con-

ventional functional connectivity, this method provides comple-

mentary insights into node connectivity and improves classifica-

tion performance by 4%, 6%, and 7% in SCZ, MCI, and ASD,

respectively. (2) The algorithm’s analysis of connection weights

and symmetrical connections demonstrates that the distinctive

connectivity patterns observed in the caudate nucleus in SCZ,

as well as cerebellar connections in ASD and MCI, offer crucial

insights into the alterations in brain connectivity associated

with these disorders.

Limitations of the study
This study has limitations. Firstly, the sample size for each dis-

ease group was relatively small, which is a significant constraint.

Future research endeavors will aim to procure larger sample

sizes from each database to enhance the robustness of the find-

ings. Secondly, while the results suggest the efficacy of using

cross-joint entropy as a primary method for constructing brain

entropy connectivity, our investigation into brain entropy con-

nectivity remains incomplete. This study primarily focused on

enhancing classification performance and did not comprehen-

sively validate nonlinear and complex alterations in brain entropy

connectivity. Thus, we aspire to delve deeper into these aspects

in future research endeavors.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to and will

be fulfilled by the lead contact, Haifeng Wu (whf5469@gmail.com).

Materials availability

This study did not generate new subjects.

Data and code availability

d Data: We validated the Sub_N+CJE algorithm using three public fMRI

datasets: MCI data, ASD data, and SCZ data. The original image data

addresses of the three databases are:

1. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) database:

https://adni.loni.usc.edu/,

2. The autistic brain imaging data exchange (ABIDE) database: http://

fcon_1000.projects.nitrc.org/indi/abide/abide_II.html,

Table 4. Continued

Type Name Expression

Cross-entropy Cross-distribution entropy52
HCDEðu;vÞ =

1

lnðaÞ
1

q � 1
ð1 � PM

m = 1p
q
mÞ, where q is the

Tsallis entropy order, a is the base, M is the number of intervals,

and pq
m represents the probability of falling in the m-th interval

Cross-entropy Cross-spectral entropy53 HCSpEðu;vÞ = � P
mPuvðfmÞlog PuvðfmÞ, where fm is the m-th

sample value of the mutual power spectrum of u and v,

and PðfmÞ is the energy proportion

Cross-entropy Cross-Kolmogorov entropy53 According to the definition of simple entropy, the distance

between phase points is calculated as dij =
��u0ðiÞ � v0ðjÞ

�� , substituted
into the correlation integral, and then substituted into the

Kolmogorov entropy formula to get
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3. The Center for Biomedical Research Excellence (COBRE) Schizo-

phrenia Imaging Database: http://fcon_1000.projects.nitrc.org/

indi/retro/cobre.html.

d Code: The code used in this study is publicly available at https://github.

com/monk5469/Entropy. The copyright for the code belongs to the

School of Electrical & Information Technology, YunnanMinzu University.

d Additional information: Any additional information required to reanalyze

the data reported in this paper is available from the lead contact upon

request.
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STAR+METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The experimental data in this study comprises rs-fMRI data pertaining to three conditions: mild cognitive impairment, autism, and

schizophrenia, all sourced from public databases. Specifically, the datasets originate from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database, available at https://adni.loni.usc.edu/; ASD data from autistic brain imaging data exchange (ABIDE)

database at Georgetown university, http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html; and the Center for Biomedical

Research Excellence (COBRE) Schizophrenia Imaging Database, at http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html.

Table 5 outlines the pertinent parameters of the aforementioned datasets. Additionally, Table 6 provides the basic demographic

statistics of subjects across the three disease groups. In this study, the SCZ dataset comprises 145 subjects, the MCI dataset

includes 64 subjects, and the ASD dataset consists of 98 subjects. A 5-fold cross-validation strategy was implemented for

each dataset to allocate the subjects into experimental groups. No significant differences were observed in age and sex distribu-

tion between the MCI and SCZ groups, while no significant age differences were found between the ASD groups. However,

gender differences were present between the ASD groups. As a result, gender was included as a covariate in the classification

of ASD to minimize its influence on the outcomes. This study did not recruit any new patients and utilized publicly available data-

sets. It has been approved by the Yunnan Minzu University Artificial Intelligence and Engineering Ethics Committee(study approval

number 20240001).

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

rs-fMRI data This paper N/A

Preprocessed rs-fMRI data This paper https://github.com/monk5469/Entropy

Software and algorithms

MATLAB2021b MathWorks RRID: SCR 001622

SPM12 University College RRID: SCR 007037

DPABI V6.1_220101 RRID: SCR_002549

Original code This paper https://github.com/monk5469/Entropy

Table 5. rs-fMRI data parameters

MCI ASD SCZ

Name database ADNI-2 ABIDE COBRE

Magnetic field

strength

3.0 Tesla 3.0 Tesla 3.0 Tesla

Collection

equipment

Philips SIEMENS SIEMENS

Flip angle 80� 90� 75�

TR 3000 ms 2000 ms 2000 ms

TE 30 ms 15 ms 29 ms

Pixel size 3.3 mm 3

3.3 mm

3.3 mm 3

3.3 mm

3.75 mm 3

3.75 mm

Number of slices 48 33 33

Number of TR 140 180 160

Table 6. Basic information statistics of subjects

ASD/NC MCI/NC SCZ/NC

Male/

Female

40/8 29/21 13/19 13/19 58/13 51/23

(Continued on next page)
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METHOD DETAILS

Related works of entropy
As the field of brain area connectivity research continues to expand, researchers have proposed various methods for assessing

brain area connections beyond the Pearson correlation coefficient. Among these, brain entropy connectivity has emerged as a

method garnering widespread attention. Entropy, originally rooted in thermodynamics, quantifies the degree of disorder within

a system, known as thermodynamic entropy.74 Subsequently, the introduction of information entropy32 has offered a novel frame-

work for characterizing the information content and uncertainty of information sources. Given the nonlinear characteristics inherent

in brain signals, entropy serves as a quantitative tool capable of effectively capturing the nonlinear dynamics of brain activity,

thereby assuming a pivotal role in brain connectivity research.19 Typically, the connectivity patterns among brain areas in individ-

uals with brain disorders transition from orderly to disordered states.75,76 In accordance with the nature of entropy, higher levels of

disorder within the system correspond to greater entropy values; conversely, as the system becomes more ordered, entropy

values decrease. Consequently, brain entropy connectivity values in individuals with brain disorders tend to exhibit higher

levels.77,78 The characteristic renders brain entropy connections potentially valuable for the detection and classification of brain

diseases.

The concept of information entropy was initially proposed by Shannon and has since undergone further refinement over sub-

sequent decades. In addition to information entropy, a plethora of entropy calculation methods have been introduced, including

approximate entropy,33 sample entropy,35 fuzzy entropy,37 and spectral entropy.40 Table 4 provides an overview of commonly uti-

lized entropy measures. Various entropy techniques have also found application in the study of brain disorders. For instance,

approximate entropy has been employed to discern individual differences in cognitive performance among elderly populations,18

while sample entropy has been utilized to investigate the chaotic and stochastic characteristics of fMRI signals in schizophrenia

patients’ brains,19 and fuzzy entropy has been employed to statistically analyze the nonlinear properties and cognitive functions in

the brains of Alzheimer’s disease (AD) patients.20 Although the studies have yielded promising outcomes in specific brain disorder

domains, they primarily focus on signal entropy within individual brain regions rather than the entropy between two signals. This

paper denotes this category of entropy as ’single entropy’ to differentiate it from the cross-entropy, which will be discussed

subsequently.

Compared to single entropy measures, cross-entropy quantifies the mutual disorderliness between two signals, rendering it

more suitable for analyzing connectivity among brain regions. Table 4 enumerates cross-entropy variants such as cross-approx-

imate entropy,46 cross-sample entropy,48 cross-fuzzy entropy,50 and mutual information entropy.43 Recent studies have integrated

physiological signals with cross-entropy methodologies to probe brain area connections. For instance, cross-sample entropy has

been employed to construct fMRI-based brain area connections for predicting depression severity,23 while cross-approximate en-

tropy has been utilized at the voxel level to assess brain activity complexity and synchrony in normal aging and cognitive decline

associated with neurodegenerative diseases.21 Additionally, cross-sample entropy has been applied to calculate EEG signal func-

tional connections and analyze brain synchronization across various emotional states.24 Furthermore, multi-channel cross-fuzzy

entropy has been utilized to construct time-varying networks for identifying changes in brain network connections during general

anesthesia.25 Moreover, a study employing cross-conditional entropy analyzed the pharmacological effects of drugs on brain con-

nections, demonstrating a decrease in linear characteristics and an increase in non-linear characteristics with varying drug dos-

ages.22 However, the studies often concentrate solely on applying specific entropy types to particular diseases or contexts, lack-

ing comprehensive evaluations of different cross-entropy methodologies’ impact on constructing brain connectivities and failing to

provide clear recommendations for researchers on selecting appropriate entropy methods for brain connectivity construction.

Moreover, the potential influence of different signal normalization methods on cross-entropy calculations and subsequent impli-

cations for brain disease classification remains unaddressed. Consequently, this paper aims to furnish more comprehensive

Table 6. Continued

ASD/NC MCI/NC SCZ/NC

Chi-

square

test

c2 = 7:54;

p = 0.006

c2 = 0;

p = 1

c2 = 2:64;

p = 0.1

Age 13.91–

8.12

10.90 ±

2.35

13.79–

8.06

10.45 ±

2.88

64�83

71.88 ±

30.02

66�86

74.31 ±

22.87

18�65

38.16 ±

193.04

18�65

35.82 ±

134.09

T-test t = 1.4224;

p = 0.1579

t = �1.8784;

p = 0.0650

t = �1.1078;

p = 0.2698
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guidance for future brain connectivity research by assessing the performance of various cross-entropy and normalization tech-

niques in brain disease classification.

Problem description
In the computation of brain connectivity, signal normalization of brain region signals is an indispensable step. Due to variances in

physiological attributes and acquisition conditions among subjects, individual differences arise in the amplitudes of obtained brain

signals. Moreover, inconsistencies in signal amplitudes may even manifest between different brain regions within the same sub-

ject. To mitigate the impact of the amplitude differences on the calculation outcomes of brain region connectivity, normalization

becomes a requisite preprocessing step. As depicted in Figure 10, Z-Score normalization and linear normalization stand out as

two widely embraced signal normalization techniques. Z-Score normalization entails adjusting the mean of the original signal to

0 and standardizing the variance to 1, whereas linear normalization confines the signal’s amplitude range between 0 and 1. In

signal correlation analyses, signals with larger amplitudes often yield higher correlation values; thus, Z-Score normalization aids

in diminishing the influence of amplitude disparities on correlation calculation outcomes. In entropy computations, establishing

the signal’s probability distribution is imperative. Linear normalization standardizes the signal’s interval range, thereby streamlining

the process of probability distribution acquisition. However, while these two normalization methods mitigate the influence of ampli-

tude differences within a single brain region on brain connectivity calculations, they also inadvertently remove amplitude differ-

ences between two or more brain regions. Nonetheless, the discrepancy may not be significant when analyzing brain disease

groups and controls. The connectivity characteristics among groups of brain regions hold paramount importance; for instance,

alterations in signal amplitude within a specific brain region may serve as a pivotal indicator in discerning its involvement in a

particular cognitive task. Hence, this paper’s primary focus is to propose a normalization method capable of standardizing the

signal scale while preserving amplitude differences between signals, thereby more accurately delineating the characteristics of

brain region connectivity.

Furthermore, this paper addresses the quantification methodology of brain region connectivity, a pivotal aspect of investigation.

Traditional approaches to quantifying brain region connectivity, such as the Pearson correlation coefficient, primarily assess the syn-

chronicity between brain regions. As illustrated in Figure 11, during cognitive tasks, BOLD signals within brain regions may exhibit

diverse response patterns. In Figure (A), both brain regions exhibit synchronized responses to the task, yielding a Pearson correlation

value close to 1; conversely, in Figure (B), while both brain areas respond to the task, their activities are asynchronous, potentially

resulting in a correlation value close to 0. Pearson correlation effectively distinguishes synchronous brain area activities in Figure (A)

from asynchronous activities in Figure (B). However, in Figure (C), one brain region exhibits a significant response to the taskwhile the

other does not. In such cases, the Pearson correlation between the twomay also approach 0. This suggests that Pearson correlation

might not adequately differentiate between low correlation values due to asynchrony in (B) or independence in (C). Consequently, this

paper delves into whether the independence and non-synchrony of brain regions can be discerned by introducing brain entropy con-

nectivity, thereby compensating for Pearson correlation’s limitations in depicting brain region connectivity information. Notably,

various calculation methods exist for both single entropy and cross-entropy, and determining which method is suitable for specific

signals or diseases necessitates focused inquiry.

Figure 10. Linear and Z Score normalization methods
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Algorithm
Subject normalization algorithm

In this section, we initially introduce the proposed subject normalization algorithm, depicted in Figure 12. Firstly, the BOLD signals

from multiple Regions of Interest (ROIs) are extracted from the subject’s fMRI data, with ROI selection facilitated by the Automatic

Anatomical Labeling Atlas (AAL) template.79 Secondly, the ROI signals are concatenated end-to-end and merged into a one-dimen-

sional sequential signal (parallel to serial), enabling comprehensive processing ofmultiple brain region signals as a unified entity. Sub-

sequently, Z-Score normalization is applied to the amalgamated sequential signal, ensuring a mean of 0 and unit variance, thereby

rectifying discrepancies in signal amplitudes across different subjects. Finally, the normalized signals are reinstated to each ROI in

their original concatenation sequence, yielding the ultimate normalized signal for each ROI (serial to parallel). The proposed normal-

ization method excels in rectifying signal amplitude disparities between subjects while preserving amplitude variations among

different ROI signals within each subject. Subsequently, we provide a detailed elucidation of the specific steps comprising the

normalization method.

Figure 11. Pearson correlation is examined under three conditions

(A) Between two synchronous ROI signals, yielding a correlation value of 1.

(B) Between two ROI signals with a quarter-cycle time difference (where in one ROI signal contains noise), resulting in a correlation value of 0.

(C) Between an ROI signal and noise, also yielding a correlation value of 0.
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Let xn be the BOLD signal vector extracted from the n-th ROI of a subject, n = 1;2;.N, expressed as

xn = ½anð1Þ;anð2Þ;.anðTÞ�T ˛RT 3 1 (Equation 1)

where ½$�T represents transposition, anðtÞ represents the signal at the t-th Time of Repetition(TR), t = 1; 2.T. The N ROI signals of

the subject are concatenated into a vector signal, expressed as

X =
�
x1

T; x2
T;.xN

T
�T ˛RNT 3 1 (Equation 2)

Then, perform Z-Score normalization on the vector signal X, then

U =
X � mX

sX

(Equation 3)

where mX and sX are themean and variance of the vectorX respectively. Since the signalX before normalization is concatenated from

the ROI signals, the signal U after normalization can also be regarded as a concatenated signal, that is

U =
�
u1

T;u2
T;.uN

T
�T ˛RNT 3 1 (Equation 4)

Then the normalized signal of each ROI will also be reinstated from the vector U, so the n-th normalized ROI signal is

un = Uððn � 1ÞT + 1 : nTÞ˛RT 3 1 (Equation 5)

where Uðn : mÞ represents a new vector composed of the n-th to m-th elements of U.

Cross-joint entropy brain connectivity algorithm

This section introduces the utilization of cross-joint entropy for constructing connectivity between brain regions. To elucidate the role

of cross-joint entropy in BOLD signal analysis, Figure 13 provides several examples showcasing cross-joint entropy outcomes be-

tween different signal types. The examples encompass two synchronous BOLD signals (Figure 13A), two asynchronous orthogonal

BOLD signals (with a period of T/4) (Figure 13B), and the outcomes of the BOLD signal combined with white noise (Figure 13C). From

the results, it is evident that in cases of synchronization and orthogonality, the cross-joint entropy value between signals is low,

whereas in the presence of white noise, the cross-joint entropy value is relatively high. The phenomenon underscores that, compared

to the Pearson correlation coefficient, although cross-joint entropy may not exhibit distinct differences between synchronous and

asynchronous signals, it demonstrates a unique advantage in distinguishing between signal independence and non-independence.

Figure 12. Flow chart of subject normalization algorithm
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As resting state brain signals can exhibit other forms beyond just synchronous and asynchronous patterns, cross-joint entropy and

Pearson correlation consequently exhibit some complementary aspects in constructing brain connectivity. Subsequently, we outline

the specific process of calculating brain connectivity using cross-joint entropy.

Let um and un be them-th and n-th ROI signals of a subject after normalization respectively, then the joint information entropy of the

two can be expressed as

Hðum;unÞ = �
XL
l = 1

XL
l0 = 1

p
�
m
ðmÞ
l ;m

ðnÞ
l0

�
log p

�
m
ðmÞ
l ;m

ðnÞ
l0

�
(Equation 6)

where pðmðmÞ
l Þ is the probability when um take the l-th value. To estimate the joint probability pðmðmÞ

l ;m
ðnÞ
l0 Þ and improve its calculation

efficiency, the histogram rectangular grid80 can be used for calculation. According to the sequence length of um and un , divide it into a

rectangular grid of I3 J, each grid size isDx3Dy, and the coordinates are ði;jÞ. Express the probability that the values of um and un fall

in the network ði; jÞ as

pij =

Z Z
cellði;jÞ

fðum;unÞdmdnzf
	
xi; yj



DxDy (Equation 7)

where ðxi; yjÞ represents the center of each unit, and fð$Þ represents the estimate of the probability density distribution function (PDF).

If the PDF is approximately constant within each unit, the approximate value of Hðum;unÞ is
Hðum;unÞz �

X
i;j

DxDy$f
	
xi; yj



log f

	
xi; yj




z �
X
i;j

pij

	
log pij � logðDxDyÞ
 (Equation 8)

If the summation boundary of i and j is omitted, and then kij=N (kij:the number of samples observed in unit ði;jÞ,N: the total number of

samples) is approximately substituted for pij, substituted into (8) will have the estimated function of Hðum;unÞ expressed as

bHðum;unÞ = �
X
i;j

kij
N

�
log

kij
N

�
+ logðDxDyÞ (Equation 9)

Figure 13. Cross-joint entropy is exampled across three scenarios

(A) Between two synchronized ROI signals, yielding the lowest joint entropy.

(B) Between two ROI signals with a one-quarter period time difference (one ROI signal containing noise), resulting in the second lowest joint entropy.

(C) Between an ROI signal and noise, with the joint entropy being the highest.
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Given that the joint entropy in Equation 9 is not derived directly from the calculation method outlined in Equation 6, it is no longer

referred to as joint information entropy. Following the naming convention established in literature,27,53 this paper adopts the term

’cross-joint entropy’ to denote the estimate of joint entropy. Similarly, by substituting the formulas for conditional entropy and

approximate entropy from Table 4 into Equation 6, the corresponding cross-conditional entropy and cross-approximate entropy

can be derived. However, the derivations will not be elaborated upon further here.

Brain entropy connectivity and brain disease classification

After computing the joint entropy between two ROIs, a subject’s ROI entropy connectivity matrix is constructed. The constructed

matrix is then utilized to classify individuals into brain disease and healthy groups, thus assessing the efficacy of entropy connectivity

in classification. The subsequent process is outlined below.

After calculating the cross-joint entropy of N ROIs of a subject, the normalized brain region entropy connectivity matrix can be ob-

tained as

H = ½ bHðum;unÞ�˛RN3N (Equation 10)

Given the matrix’s symmetric nature and the fact that the diagonal represents the entropy of the signal itself, values above the di-

agonal are extracted to form a feature vector for classification, expressed as

U = UTðHÞ˛R
NðN� 1Þ

2
3 1 (Equation 11)

The function UTð$Þ represents taking the column vector composed of triangular elements above the diagonal of the matrix. Then,

k-fold cross-validation is used to complete the brain disease group classification of brain entropy connectivity, let X be the set

composed of all J subjects, and divide the set into XS and XT , so that 
XS WXT = X

!
&
	
XS XXT = 0



&

 ��XS
����XT
�� = k � 1

!
(Equation 12)

Introducing the symbol j to represent the j-th subject, let Uj in (15) and its label yj form a new cell variable

Xj = <Uj; yj > (Equation 13)

From (6), we form a training set S and a test set T , expressed as

S =
�
Xj

��j ˛XS
�

(Equation 14-a)

T =
�
Xj

��j ˛XT
�

(Equation 14-b)

We first train a classifier fcð$Þ in the training set to satisfy

yj = fcðUjÞ; j˛XS (Equation 15)

then, Uj in the test set is passed through the classifier to obtain the classification label

byj = fcðUjÞ; j˛XT (Equation 16)

compare it with the expected label yj to obtain the final classification accuracy. The Algorithm steps are shown in Table 7.

Table 7. Algorithm steps

input:

N ROI signals of subjects xn, n = 1;2;.N,number of subjects J

output:

The test label byj of the j-th subject

step:

①Normalization: Calculate the subject’s normalized signal un

from 1-5,

②Cross-joint entropy: Calculate the cross-joint entropy between subject ROIs by 6-9,

③Entropy connectivity: The entropy connectivity vector U is obtained from 10-11,

④Cross-validation: The training set S and the test set T are composed of 12-14, 15 completes the training, (16) obtains the test result byj
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Data preprocessing
The data in this paper was preprocessed using the data processing & analysis of brain imaging (DPABI)81 toolbox. The download

address is http://rfmri.org/DPABI, the version is DPABI_V6.1_220101. In the pre-processing, some data which cannot be correctly

registered with structural image and functional image are eliminated. The main steps are as follows:

d Convert the original data to NIFIT format and remove the first 10 frames of unstable images;

d Determine the number of slices and use interlayer scanning to avoid delays in scanning adjacent layers;

d Carry out head movement correction to avoid interference from factors such as head movement, breathing and heartbeat;

d Carry out spatial standardization to eliminate differences in brain structure between subjects;

d Remove noise covariates and linear drift, adjust head movement parameters, and filter out low-frequency offset and high-fre-

quency noise, where the filtering range is 0.01�0.1Hz;

d Use AAL116 template79 to extract the original ROI signal.

Other detailed preprocessing steps for data collection of different equipement can be seen in Table S5.

Experimental methods and classification
This experiment considers the following normalization methods, respectively:

d ROI_N: Each ROI signal of a subject is normalized using the Z-Score method30 so that its mean is 0 and its variance is 1;

d Sub_N: For the method proposed in this article, see (1-5);

d ROI_NM: The linear normalization method31 is used for each ROI signal of each subject, so that the maximum value is 1 and the

minimum value is 0.

d Sub_NM: After concatenating all the ROIs of each subject, the linear normalization31method is used. Themaximum value of the

signal after concatenating and normalization is 1 and the minimum value is 0.

d No_N: The original ROI signals of each subject were used to construct brain connectivity without any normalization method.

When analyzing brain connectivity methods, normalization and cross-entropy are primarily juxtaposed for comparison, alongside

related methodologies. Table 8 presents the abbreviations of the cross-entropy and normalization methods employed in this

analysis.

When employing the aforementioned method to construct brain connectivity for classification, a 5-fold cross-validation approach

is utilized. Specifically, the dataset is divided into five subsets, with four subsets used as training sets and one as a test set. Each

subset serves as the test set once. Tomitigate the influence of chance, the final classification accuracy in the experiment is computed

as the average of 100 5-fold cross-validation results. The classifier employed is the support vector machine (SVM), with classification

accuracy denoted as ’acc’ and defined as follows

acc =
TP+TN

TP+FP+FN+TN
(Equation 17)

TP is the number of true positives, TN is the number of true negatives, FP is the number of false positives, and FN is the number of

false negatives.

To further evaluate the practical significance of the proposed method in the study of brain diseases, this paper examines the

symmetry of brain connections across 116 ROIs, with 58 regions in each hemisphere, for the three diseases. The analysis aims

to investigate changes in brain connectivity patterns in patients with these conditions. In the experiment, differences between

groups in whole-brain connections were identified using two-sample t-tests under various P-values. The brain regions affected

Table 8. Normalized cross-entropy brain area connection method

Abbreviation Full name Abbreviation Full name

CJE Cross-joint entropy CSpE Cross-spectral entropy

CCE Cross-conditional entropy CKE Cross-Kolmogorov entropy

CApE Cross-approximate entropy ROI_N Z Score normalization of ROI

CSaE Cross-sample entropy Sub_N Z Score normalization of subject

CFE Cross-fuzzy entropy ROI_NM Linear normalization of ROI

CPE Cross-permutation entropy Sub_NM Linear normalization of subject

CDE Cross-distribution entropy No_N Non-normalized
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by these diseases were localized based on whether the differences in connections were symmetric. Finally, the degree of symme-

try variation in 58 pairs of nodes was calculated. The three symmetry phenomena considered in this study are presented in

Figure 14, as follows:

d Node connection symmetry: If the left hemisphere ROI A and the right hemisphere ROI B both exchange information with ROI C,

and these connections become abnormal when affected by disease, then node connection symmetry is considered to have

occurred.

d Intrahemispheric connection symmetry: If ROI A andROI C in the left hemisphere exchange information, andROI B andROI D in

the right hemisphere do the same, and both connections become abnormal when affected by disease, then intrahemispheric

connection symmetry is considered to have occurred.

d Cross-hemisphere connection symmetry: If the left hemisphere ROI A and the right hemisphere ROI D exchange information,

while the right hemisphere ROI B and the left hemisphere ROI C exchange information at the same time, when the disease af-

fects these two connections, then the cross-hemisphere connection symmetry can be considered to have occurred.

ROI proportion of symmetric connections (psc) is defined as

psc =
TP0

numðROIÞ32 � 4
(Equation 18)

where the numerator TP0 represents the number of connections exhibiting symmetry, while the denominator indicates the total num-

ber of connections associated with the selected ROI. To eliminate the influence of self-connections and cross-connections involving

the selected ROI, these four items are excluded from the total count of connections.

This experiment was conducted under the Windows 11 Professional 64-bit operating system, This experiment was conducted

under the Windows 11 Professional 64-bit operating system. The CPU is 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz, the

GPU is NVIDIA GeForce RTX 3050 Ti, and the memory is 16GB. All algorithm models are constructed under the Matlab2021b

framework.

In addition, graph features derived from brain connectivities were also extracted in the experiment to characterize the fundamental

properties of the network and the distribution of node connectivities. In general, these features were selected from an undirected

graph (as functional connectivity is inherently undirected), retaining a total of seven features that exhibit significant differences.

The pertinent graph features were extracted using the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/home),

with the feature descriptions provided in Table 9.

Figure 14. Three symmetrical patterns of brain connectivity

"A-D" denotes only the connection points in the graph; for instance, "A-B" represents the connection between point A and point B. The detailed description of the

figure is included in the experimental methods and classification section.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Group analysis
In this study, subjects with three types of diseases were categorized into patient groups and normal control groups. Following data

preprocessing using Dpabi(see subsection data preprocessing), the ROI time series matrix signals for each subject were extracted.

Subsequently, the proposed subject normalization method was applied to process the data, after which entropy connectivity was

calculated for further analysis. Initially, classification accuracy was assessed to identify the method yielding the best classification

performance. Next, computational complexity was evaluated to determine the most efficient feature extraction approach. After a

comprehensive evaluation, the optimal method (Sub_N+CJE) was identified.

Comparative analysis
We conducted a comparative analysis to evaluate the proposed method against traditional approaches from multiple perspectives.

First, Sub_N+CJE was shown to exhibit more differential connections by calculating the connections to the central node (PCC) (see

Figure 3). Additionally, connection weights were analyzed to identify differences across various brain regions when compared with

traditional methods (see Figures 4, 5, and 6). We also examined the functional connection symmetry (see Figure 14) changes in the

brain by comparing the brain entropy connections proposed in this study with traditional methods using a two-sample t-test, and we

provided results for three diseases under three different significance thresholds. Finally, differences in test results were calculated

based on seven graph theory features (with the significance threshold set at p < 0.05) (see Tables 1, 2, and 3).

Table 9. Graph features and description

Features Describe

Global efficiency The reciprocal of the average shortest path length

Modular Degree of subdivision into groups

Isogamy Correlation coefficient between the degrees of all nodes at both ends of the line

Average traffic The average value of the node’s flow coefficient

Node strength The sum of the weights of the links connected to the node

Clustering coefficient Node aggregation degree coefficient

Participation coefficient A measure of the diversity of inter-module connections at a single node
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