
A fast dynamic causal modeling regression method for fMRI

Haifeng Wu a,b,c,*, Xinhang Hu a, Yu Zeng a,b,c

a School of Electrical and Information Engineering, Yunnan Minzu University, Kunming, 650500, China
b Yunnan Provincial Key Laboratory of Unmanned Autonomous Systems, Kunming, 650500, China
c Yunnan Provincial Colleges and Universities Intelligent Sensor Network and Information System Technology Innovation Team, Kunming 650504, China

A R T I C L E I N F O

Keywords:
GLM
DCM
Sparse
Effective connectivity
Computational complexity

A B S T R A C T

Dynamic Causal Modeling (DCM) is a crucial tool for studying brain effective connectivity, offering valuable
insights into brain network dynamics through functional magnetic resonance imaging (fMRI) and electrophys-
iology (EEG and MEG). However, its high computational complexity limits its applicability in large-scale network
analysis. To address this issue, we propose a regression algorithm that integrates the Generalized Linear Model
(GLM) with Sparse DCM, termed GSD. This algorithm enhances computational performance through three key
optimizations: (1) utilizing the symmetry of the Fourier transform to convert complex frequency domain cal-
culations into real number operations, thereby reducing computational complexity; (2) applying GLM and
filtering techniques to minimize the effects of noise and confounds, enhancing parameter estimation accuracy;
and (3) defining a new cost function to optimize variational inference and filter parameters, further improving
parameter estimation accuracy. We validated the GSD algorithm using three public fMRI datasets: simulated
Smith small-world network data, attention and motion measured data, and face recognition repetition effect
measured data. The experimental results demonstrate that the GSD algorithm reduces computation time by over
50 % while maintaining parameter estimation performance comparable to traditional methods. These findings
offer a new perspective on balancing model interpretability and computational efficiency, potentially broadening
the application of DCM across various fields.

1. Introduction

The human brain is a dynamic system composed of interconnected
regions, exhibiting structural connectivity, functional connectivity, and
effective connectivity (Friston, 2011). Studying these interconnections is
crucial for understanding brain mechanisms. Unlike structural and
functional connectivity, effective connectivity provides more directional
and mechanistic information. It not only describes correlations between
brain regions but also reveals the causal relationships and information
flow or message passing underlying these correlations.

With the continuous development of brain imaging technology,
several methods have emerged to study effective connectivity using
functional magnetic resonance imaging (fMRI). These methods include
structural equation modeling (SEM) (Mclntosh and Gonzalez-Lima,
1994), multivariate autoregressive modeling (MAR) (Harrison et al.,
2003), Granger causal modeling (GCM) (FRISTON et al., 2013), and
dynamic causal modeling (DCM) (Kiebel et al., 2008; Bönstrup et al.,
2016; Klingner et al., 2015; Friston et al., 2003; Wang et al., 2019; Frank
et al., 2001). Among these, GCM and DCM are the most representative.

GCM is a relatively simple and intuitive statistical method that estimates
causal relationships between time series (observational data). However,
it is very sensitive to noise and confound in the data, which may lead to
misleading causal inferences. DCM, based on dynamic system theory
and state space models (Friston, 2002; Hamilton, 1994), offers a more
comprehensive consideration of the dynamic coordination within brain
networks. It explains brain activity based on prior neuroscience
knowledge, providing richer information. This makes DCM the main-
stream method for studying effective connectivity, and numerous new
methods have been developed in combination with it (Rigoux and
Daunizeau, 2015; Ostwald and Starke, 2016; Liang et al., 2022; OU
et al., 2022; Shi and Li, 2024; K J FRISTON et al., 2002; K J FRISTON
et al., 2002).

Despite its advantages, DCM’s computational cost is relatively high.
Firstly, DCM uses complex neural dynamic models, such as neural mass
models (David O, 2003) and neural population models (Zetterberg et al.,
1978), to describe the dynamic coordination between brain regions.
These models are typically based on differential or difference equations
and require numerical methods for solving. Secondly, DCM employs
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state space models (Stephan and Roebroeck, 2012) to link the neural
dynamic model with actual observation data, accurately describing the
relationship between the observed data and hidden neural activity.
Solving this mathematical model demands substantial computational
resources and time. Lastly, the core of DCM involves fitting actual
observation data by estimating parameters of the brain network model,
often through complex optimization problems like the
expectation-maximization (EM) algorithm and variational Laplace (VL)
(Moon, 1996), which requires multiple iterations to converge. The
computational limitations make model inversion costly, especially for
complex models, restricting DCM’s application to large-scale networks
with more brain regions.

To improve DCM’s computational speed and reduce its cost, various
new variants have been proposed. One approach simplifies the model,
such as by simplifying the neural dynamics model or considering certain
biological processes or connections as constants or fixed values, thereby
reducing the number of parameters to estimate (Frässle et al., 2017;
Prando et al., 2020; Stephan et al., 2008). Another approach simplifies
the model structure by limiting connectivity types or topological struc-
tures to reduce parameter estimation (Seghier and Friston, 2013).
However, these simplified models may lose some biological details,
reducing the model’s interpretability and predicted validity. They may
also struggle to capture the dynamic processes of complex brain net-
works, thus not fully meeting researchers’ needs. Another variant im-
proves DCM’s computational speed by enhancing parameter estimation
and optimizing computational methods, such as through approximate
inference (Frässle et al., 2018; Sahoo et al., 2019; Frässle et al., 2021)
and transform domain methods (Razi et al., 2017; Novelli et al., 2024;
Friston K et al., 2014; Sato et al., 2009). While these methods progress in
improving computational speed, they often require assumptions about
the model, potentially affecting accuracy and reliability. Additionally,
data-driven approaches use machine learning techniques to automati-
cally learn and extract features and dynamics of brain networks from
large amounts of observational data (Sotero and Sanchez-Bornot, 2024;
Zhou et al., 2024). Compared to traditional models based on prior bio-
logical knowledge, data-driven methods better adapt to different sub-
jects’ brain network characteristics and conditions, improving model
applicability and predicted validity. However, these methods require
extensive labeled data.

From the above, DCM’s interpretability and complexity are often in
conflict. Methods with strong interpretability tend to be highly complex,
while those with lower complexity offer faster computation but weaker
interpretability. To address these issues, we propose a sparse DCM al-
gorithm combined with the Generalized Linear Model (GLM) (Worsley
and Friston, 1995; Poline and Brett, 2012), termed the combined
Generalized Linear Model and sparse DCM (GSD) algorithm. This algo-
rithm aims to balance model interpretability and computational
complexity, ensuring a certain level of complexity while achieving faster
computation. The contributions of this paper are as follows:

• Utilizing the symmetric characteristics of the Fourier transform to
convert complex frequency domain calculations into real number
calculations, reducing computational complexity.

• Applying GLM and filtering techniques to eliminate some observed
signal noise, improving parameter estimation accuracy.

• Using a defined cost function to optimize variational inference pa-
rameters and filter parameters, further enhancing parameter esti-
mation accuracy.

In summary, we introduce a novel and efficient (GSD) scheme for
characterizing effective connectivity using DCM. The key conceptual
advance is to include data feature selection as part of variational model
inversion. In more detail, we first commit to an efficient kind of DCM
known as regression DCM (rDCM) (Frässle et al., 2017; Lin Tiger et al.,
2020). In brief, rDCM replaces the inversion of a multivariate timeseries
by estimating the incoming effective (afferent) connectivity to each

node (i.e., region of interest) one node at a time, using the observed
responses of the remaining notes as driving or modulatory inputs. This
allows us to use a simple bilinear model — upon which DCM for fMRI is
based — in which the effective connectivity maps from inputs to the first
time derivative of the target node. To make this scheme more efficient,
we reformulate the (bilinear) model using a Fourier transform. This
means that Fourier transformed data can be reduced in size by selecting
appropriate frequencies. Crucially, this data selection — which corre-
sponds to filtering in frequency space — can be optimised using the
principles of optimal experimental design (Lindley, 1956). Namely,
selecting frequencies that reduce uncertainty or maximise information
gain, under the current posterior estimates of the generative model. We
approximate the expected information gain of low-pass, high-pass and
bandpass filtering (specified by hyperparameters) with an objective
function that replaces the observed data with data generated by the
model. This provides an inversion scheme that complies with the dual
principles of Bayes optimality; namely, maximizing the evidence or
marginal likelihood of the generative model, while maximizing the ex-
pected information gain afforded by data-selection.1 This scheme is
equipped with two further devices to reduce computational complexity.
First, an elementary transform is used to finesse operations on complex
numbers, leveraging the symmetry of the Fourier transform (of real
valued timeseries). Finally, during the variational inversion of each
bilinear regression model, we introduce sparsity priors based upon the
Bernoulli distribution. This enables the elimination of connections, such
that the scheme only has to estimate connectivity from the Markov
blanket of each node. In standard DCM schemes, this sparsity prior
would normally be implemented after model inversion using Bayesian
model reduction. However, by incorporating the sparsity constraints
explicitly during model inversion, one can progressively reduce
computational load as certain parameters (i.e., effective connections)
are removed. Together, GSD affords an extremely efficient form of
complex system modelling for sparsely coupled nodes, under mild prior
constraints on the dynamics. We validated the algorithm using three
datasets: simulated Smith small-world network data (Smith et al., 2011),
measured attention and motion data (Büchel and Friston, 1991; Friston
K and Frith, 1995), and measured face recognition repetition effect data
(Wakeman and Henson, 2015; Lee et al., 2022; Ewbank et al., 2013). The
experimental results show that the GSD algorithm reduces computation
time by at least 50 % for small problems, increasing to one or two orders
of magnitude as the size of the problem scales, while maintaining similar
parameter estimation performance and improving precision and accu-
racy metrics.

2. Related work

DCM is a prominent method for studying brain effective connectiv-
ity. First introduced by Friston et al. in 2003 (Friston et al., 2003), DCM
is based on Bayesian theory and dynamic system modeling, aimed at
estimating causal relationships between brain regions in neural net-
works. Initially applied to fMRI data, it was later extended to electro-
encephalogram (EEG) and magnetoencephalogram (MEG) data (Kiebel
et al., 2008; Bönstrup et al., 2016; Klingner et al., 2015). By establishing
a neural dynamics model, DCM describes the dynamic coordination of
brain activity, revealing functional connectivity patterns and modula-
tion mechanisms within brain networks. Continuous advances in brain
imaging technology and computational methods have led to ongoing
improvements in DCM (Frässle et al., 2017), (Frässle et al., 2018),

1 It is in terms of efficient evidence accumulation. In other words, instead of
trying to ingest all available data in parallel, it can be computationally more
efficient to assimilate small amounts of informative data, much like saccadic
eye movements select the salient parts of the visual scene (the analogy here is
that there are salient regions in frequency space that speak to a Bayes optimal
filtering).
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(Novelli et al., 2024; Friston et al., 2014).
One of the early advances in DCM involved transforming causal

connectivity parameters into the frequency domain, such as with the
partial directional coherence (PDC) algorithm (Sato et al., 2009). This
method enhanced calculation speed by simplifying the complex neural
dynamics model and model regression, enabling the decomposition of
multivariate partial correlation from the multivariate autoregressive
model. Researchers have also made nonlinear extensions to DCM
(Stephan et al., 2008) to simulate gating processes at the neural soma
level, essential for controlling conduction gain between neuronal pop-
ulations. Moreover, combining DCM with other technologies has
expanded its application in neuroscience. For example, behavioral dy-
namic causal modeling (bDCM) (Rigoux and Daunizeau, 2015) analyzes
the brain’s transformation of stimuli into behavioral outcomes, exam-
ining the contributions of brain regions and their connections in
generating behavior. Another example is combining DCM with transfer
entropy (Shi and Li, 2024), which uses asymmetry detection of transfer
brain entropy to quantify differences in predictive information between
forward and backward time series, establishing a more accurate causal
relationship detection standard. DCM has also been applied to
event-related potentials (ERP) recorded by electroencephalograms
(OSTWALD and STARKE, 2016), proposing a probabilistic latent vari-
able delayed differential equation model to improve ERP-DCM’s tech-
nical accessibility. Model selection theory is another crucial aspect of
DCM. Efficiently searching for the target model from the model space is
vital for model selection, with the greedy algorithm (Ou et al., 2022)
being a common search strategy that lowers the threshold for explor-
atory DCM analysis. Additionally, model selection should implement
inference at the group level. Hierarchical applications (Liang et al.,
2022), (Friston et al., 2002; Friston et al., 2002) of DCM have become
current; for example, the use of Parametric Empirical Bayes (PEB) to test
hypotheses about differences between groups or, hierarchical structure
planning in which DCM’s can be hierarchically composed.

Reducing DCM’s computational complexity has always been a key
goal, aiming to enhance computational speed and enable causal rela-
tionship inference in large-scale brain networks. Simplifying the model
is a common approach to reducing complexity, such as by decreasing the
number of parameters to estimate. For instance, rDCM (Frässle et al.,
2017) ignores the bilinear effect in DCM, significantly reducing the
parameters to estimate. Another approach treats DCM as a sparse

regression model (Seghier and Friston, 2013; Frässle et al., 2018) or a
low-dimensional multivariate regression model (Sahoo et al., 2019). The
former uses variational inference technology to accelerate operations,
like in sparse regression DCM (sparse rDCM), while the latter reduces
data dimensionality in space and time, combining optimization strate-
gies like extrapolation and gradient descent. The algorithms effectively
capture valid DCM parameters between brain regions by reducing
redundant estimation parameters. Simplifying the model structure itself
is another approach, such as transforming continuous neural dynamics
models into discrete models and using a linear, regionalized hemody-
namic response function for hemodynamic models (Prando et al., 2020).

However, simplifying models to reduce computational complexity
can compromise interpretability. To avoid this, optimizing computa-
tional methods and improving efficiency can achieve fast computation
without sacrificing interpretability. A notable method is combining
spectral DCM with resting-state fMRI (rs-fMRI) technology (Razi et al.,
2017; Novelli et al., 2024; Friston K et al., 2014). Spectral DCM inher-
ently improves computational speed, and its combination with rs-fMRI
omits the estimation of hidden neural states, significantly enhancing
algorithm efficiency. Recently, the rapid development of machine
learning has introduced ways to reduce running time by combining DCM
with machine learning techniques. For instance, physical neural net-
works, graph neural networks, and long short-term memory networks
(Sotero and Sanchez-Bornot, 2024; Zhou et al., 2024) have been used to
infer causal connectivity parameters. While combining DCM with ma-
chine learning does not directly reduce running time due to the exten-
sive training required, especially with large data volumes, the output
process is swift once the model is trained.

3. Problem statement

This paper primarily focuses on the inversion of DCM in the fre-
quency domain. The key advantage of frequency domain DCM is that it
does not require solving the hidden states of neurons (Razi et al., 2017;
Novelli et al., 2024; Friston et al., 2014), simplifying the calculation and
speeding up computations. Additionally, in the frequency domain, it is
easier to implement filtering such as low-pass, high-pass, and band-pass
filters. By setting the response value of the filtered signal band to zero in
the frequency domain filter, an ideal filtering function can be achieved.
The goal of this paper is to enhance the calculation speed of DCM while

Fig. 1. Problem statement in this paper.
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maintaining its regression performance. To achieve this, we will address
several issues with frequency domain DCM, as illustrated in Fig. 1.

Firstly, although spectrum calculations simplify the model compu-
tation process, a real signal becomes a complex signal after a Fourier
transform. Complex number operations typically increase computa-
tional complexity compared to real number operations. For example,
multiplying two complex numbers requires four multiplications (one for
each real or complex part of the numbers), resulting in O(4n) complexity
if repeated n times. In contrast, multiplying two real numbers only re-
quires n multiplications, resulting in O(n) complexity. Therefore, the
first issue this paper addresses is whether the additional computational
complexity introduced by converting real numbers to complex numbers
can be reduced after applying the Fourier transform.

Secondly, after transforming DCM into the frequency domain, noise
reduction processing is necessary to improve efficiency. Common
methods involve using bandpass or bandstop filters (Wang et al., 2019).
In theory, effective noise reduction requires the noise frequency to be in
the stopband and the signal frequency to be in the passband. However, if
both the noise and signal are broadband signals with overlapping fre-
quencies, the noise reduction performance of the filter is compromised.
Existing studies (Frank et al., 2001) confirm that fMRI noise originates
not only from low-frequency heartbeats and breathing but also from
other high-frequency signals. Thus, the second issue this paper addresses
is whether to rely solely on filters for noise reduction or to consider
combining them with other noise reduction techniques.

Lastly, calculating DCM in the frequency domain involves setting
hyperparameters, including initial values, prior information, and pa-
rameters for noise reduction. Proper hyperparameters can significantly
improve DCM efficiency. One approach to setting hyperparameters is
using empirical values, but this method faces uncertainty under
changing environments or conditions. Another approach is using an
objective function, such as minimizing error, maximizing a posteriori
probability, or maximizing negative free energy (Friston and Mattout,
2007). This method aims to ensure the model state aligns with the
observed values when hyperparameters are optimal. However, observed
values often contain noise, potentially causing hyperparameters to

match the noise rather than the true signal, thereby reducing efficiency.
Therefore, the third issue this paper addresses is how to design a robust
objective function to obtain optimal hyperparameter values.

4. Algorithm

In this section, we introduce the various modules of the proposed
algorithm, with its flowchart shown in Fig. 2. First, we obtain the cor-
responding stimulation signals based on the experimental design and
construct the design matrix. We then use the GLM algorithm and Sta-
tistical Parametric Mapping (SPM) software to accurately identify acti-
vated brain regions and extract the BOLD signal from the regions of
interest (ROIs). Since neuronal activity in the original DCM is an un-
observable hidden state, we transform the original model into a linear
regression equation in the frequency domain, where we replace the
inversion of a multivariate timeseries by estimating the incoming
effective connectivity to each ROI at a time, and select appropriate
frequencies for regression (such as frequency-domain filter later). This
transformation avoids the need to estimate the hidden neuronal state. To
further reduce noise interference in the observed signal, we introduce
two filtering techniques. The first technique involves reconstructing the
GLM signal using the fitting coefficients estimated by GLM and replacing
the original BOLD signal in the linear regression equation, achieving the
first level of filtering. Next, we apply a frequency domain filter for the
second level of filtering. Although the linear regression equation re-
mains in complex form after two rounds of filtering, we convert it into a
real equation through elementary transformations, simplifying the
calculation process further. Finally, we optimize the cost function to
determine the optimal hyperparameters and use variational inference
techniques to obtain the final DCM regression parameters.

4.1. DCM linear regression

The original DCM describes the derivative żt of the neuronal state in
the brain region as the sum of the intrinsic coupling between the
neuronal states, the coupling regulated by the exogenous stimulus, and

Fig. 2. Flowchart of the proposed method.
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the exogenous stimulus (Friston et al., 1997). Since zt cannot be ob-
tained directly and is considered a hidden state, a state space model is
typically needed to solve the coupling relationship. In this paper, we
utilize the convolution model of the BOLD signal to convolve the he-
modynamic response function (HRF) on both sides of the original DCM
equation. With the fitting coefficients from the GLM, the original
equation can be transformed such that the BOLD signal yt represents the
product of the exogenous stimulus convolved with HRF and the fitting
coefficients, as shown in Fig. 3. In the new equation, yt is the observed
signal, and the exogenous stimulus, which is derived from the experi-
mental design, is considered known. This eliminates the need for a state
space model. Additionally, since the BOLD signal is a discrete signal, its
derivative can be approximated differentially and then Fourier trans-
formed, resulting in a linear regression equation in the frequency
domain. Below, we will describe the linear regression equation in detail.

Let z(r)t be the neuronal activity state of the r-th brain region at time t.
According to dynamic theory and DCM (Friston et al., 2003), the dif-
ferential żt of the neuronal state of the brain region can be expressed as
(for simplicity, r is omitted)

żt =

(

A+
∑K

j=1
ujtB

j

)

Zt + CUt (1)

where
ujt represents the j-th stimulus at time t,
Zt =

[
z(r)t
]
∈ RR× 1 represents the column vector composed of the

neuronal activities of R brain regions at time t,
Ut =

[
ukt
]
∈ RK× 1 represents the column vector composed of K

stimulus at time t,
A ∈ R1 ×R represents the row vector of endogenous network con-

nectivity coefficients that are independent of stimulation,
Bj ∈ R1 ×R represents the row vector of endogenous network con-

nectivity coefficients modulated by the j-th stimulus,
C ∈ R1 ×K represents the row vector of neuronal activity directly

affected by the stimulus.
According to the convolutional linear model, the BOLD signal can be

expressed as

yt = zt ⊗ ht (2)

where ht is HRF, so convolving both sides of (1) with HRF yields

ẏt = Aψ t +
∑K

j=1
Bjyʹj

t +Cy
ʹ́
t (3)

where

ψ t = Zt ⊗ ht =
[
y(r)t
]
∈ RR× 1,

yʹj
t = ujtb

TUt ⊗ ht (see appendix for proof),
b is the fitting coefficient matrix obtained by GLM,

yʹ́
t = Ut ⊗ ht

If the BOLD signal yt is expressed in discrete form and its value at the
n-th sampling point is

yn = ynΔt (4)

where Δt represents the sampling interval, i.e. repetition time (TR), then
ẏn can be approximated as

ẏn ≈
yn+1 − yn

Δt
(5)

Substituting (5) into (3), and performing digital Fourier transform on
n = 1,2, …N sampling points, we have

Ẏn = AΨn +
∑K

j=1
BjYʹj

n + CY ’́
n (6)

where Ẏn, Ψn, Yʹj
n and Y

ʹ́
n are the N-point Fourier transform results of

ẏn, ψn, yʹ
j
n and yʹ́

n, respectively.
When performing the Fourier transform, the number of basis func-

tions is set to match the time points of the BOLD signal. Let

Fig. 3. Schematic diagram of the linear regression model construction without hidden state.
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Xo =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ψ1 Ψ2 … ΨN

Yʹ1
1 Yʹ1

2 … Yʹ1
N

Yʹ2
1 Yʹ2

2 … Yʹ2
N

⋮ ⋮ … ⋮
YʹK

1 YʹK
2 … YʹK

N

Yʹ́
1 Yʹ́

2 … Yʹ́
N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

∈ CN×(R+RK+K) (7)

θ =
[
AB1B2…BKC

]T
∈ R(R+RK+K)×1 (8)

Ẏo
= [Ẏ1 Ẏ2 … ẎN]

T
∈ CN× 1 (9)

Then, (6) becomes

Ẏo
= Xoθ (10)

In (10), the vector Ẏo is composed of the derivative of the BOLD
signal and is known. The design matrix Xo is composed of the BOLD
signal, the stimulus and the GLM fitting coefficients, and it is also
known. The parameter vector θ represents the neural connectivity
parameter to be estimated and is unknown. Therefore, (10) can be
regarded as a linear regression equation.

Note that the estimated connectivity parameters of the original DCM
model are matrices, whichmeans that the estimation is the inversion of a
multivariate timeseries. In (10), the parameter θ is only a vector for the
neural connectivity between one brain region and others, so the
regression is carried out region by region.

4.2. GLM filtering

In the linear regression equation constructed in the previous section,
both the observation on the left and the design matrix on the right
involve the BOLD signal, which is extracted from the fMRI image and
inevitably contains noise. To improve estimation accuracy, this section
uses filtering techniques to reduce noise, employing both GLM filtering
and frequency domain filtering, as illustrated in Fig. 4. For GLM
filtering, we first use GLM to reconstruct the BOLD signal. We then
replace the original BOLD signal in the observation and design matrices
with the reconstructed GLM signal to obtain new observation and design
matrices, as shown in the green box in Fig. 4. For frequency domain
filtering, we filter the observation and design matrices obtained after
GLM filtering to further refine them, as shown in the red box in Fig. 4.
The high-frequency and low-frequency cutoff frequencies of the filter
are optimized using the cost function (see Section 4.6). Next, we will
describe the process of GLM filtering.

Using GLM (Worsley and Friston, 1995; Poline and Brett, 2012), the
GLM output signal yg = [γn] ∈ RN× 1 of a brain region can be expressed
as

yg = xgβ (11)

where xg ∈ RN×K is the GLM design matrix for K stimulus and β ∈ RK× 1

is the fitting coefficient matrix. If the observed BOLD signal yn of the
brain region is replaced by the GLM output γn, then we have

yn = γn + ξn (12)

where ξn is the error between the BOLD signal and the GLM output
signal. Substituting (12) into (10), the Fourier transform signal Yg of the
GLM output of a brain region can be expressed as (see the appendix for
proof):

Ẏg
= Xgθ + Ξg (13)

where Ẏg
= [Γ̇n] ∈ CN× 1 and Γ̇n is the Fourier transform of the GLM

output derivative γ̇n =
γn+1 − γn

Δt . The corresponding design matrix Xg is
expressed as:

Xg =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ψg
1 Ψg

2 … Ψg
N

Yʹ1
1 Yʹ1

2 … Yʹ1
N

Yʹ2
1 Yʹ2

2 … Yʹ2
N

⋮ ⋮ … ⋮
YʹK

1 YʹK
2 … YʹK

N

Yʹ́
1 Yʹ́

2 … Yʹ́
N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

∈ CN× (R+RK+K) (14)

where
Ψg

n is the result of replacing the Fourier transform of the BOLD signal
yn of ψn in (7) with the Fourier transform of the GLM output γn,

Ξg is the error vector generated when ξn in (12) is substituted into
(10).

In (13), the BOLD signal involved in the vector Ẏg has been replaced

Fig. 4. GLM filtering and frequency domain filtering.

Fig. 5. A frequency domain filter Hs
η used in this algorithm.

H. Wu et al. NeuroImage 304 (2024) 120954 

6 



by the GLM signal, and the BOLD signal involved in the design matrix Xg

has also been replaced by the GLM signal.

4.3. Frequency domain filtering

This section describes the frequency domain filtering shown in Fig. 4
in detail. The filter will select appropriate frequencies to reduce the size
of the Fourier transformed data, and select frequencies that reduce un-
certainty or maximize information gain under the current posterior es-
timate of the generative model. Let Hs

η ∈ {0,1}N× 1 be an ideal digital
filter vector in the Fourier transform domain, whose (n − s)-th element
is expressed as

Hs
η(n − s) = gsη(n − s) + gʹs

η (n − s) (15)

where
gs=0η (n) is a gate function with width η, that is:

gs=0η (n) =
{
1, 0 < n ≤ η
0, η < n ≤ N (16)

s is a shift,
gʹs

η (n − s)is the mirror of the gate function gsη(n − s) about axis n =

⌊(N + 1)/2⌋.
The filter Hs

η can be shown in Fig. 5, and its cutoff frequency can be
set by s and η. When s = 0, it is low-pass filtering; when s ≥ (N + 1)/2 −

η, it is high-pass filtering; the others are band-pass filtering. Filtering Ẏg

is to multiply both sides of (13) by the filter Hs
η, and we have

Ẏf
= Xfθ + Ξf (17)

where Θ represents a Hadamard product and ( • )
∗ represents removing

zero elements, so Ẏf
=
(
Ẏg

⊙Hs
η
)∗

means the Hadamard product of two

vectors and then removes the zero elements and Ẏf
∈ CM× 1 in which M

is the number of non-zero elements after the Hadamard product. Simi-
larly, the design matrix is Xf =

(
Xg ⊙Hs

η
)∗

∈ CM× (R+RK+K), and the
noise vector after the filter is Ξf ∈ CM× 1.

In (17), after filtering, new observation and design matrices are ob-
tained. Through frequency domain filtering, we aim to eliminate noise
outside the desired frequency band while retaining useful signals within
it. It is important to note that the parameters s and η in the filter design
represent the low-frequency and high-frequency cutoff frequencies of
the filter, respectively. The parameters are determined by optimizing the
cost function, as introduced in Section 4.6.

4.4. Conversion to real numbers

Since this paper solves DCM in the frequency domain, the original
real signal becomes a complex signal, making complex operations
generally more complicated than real operations. Therefore, this section
aims to convert the complex equation into a real one to reduce
complexity. Due to the conjugate symmetry in the upper and lower parts
of the digital Fourier transform result, and the fact that linear equations
retain their solutions after elementary transformations, we achieve the
real number conversion by adding or subtracting the upper and lower
parts of the transformed result, as illustrated in Fig. 6.

Therefore, we perform elementary transformations on Ẏf and Xf in
(17) respectively, and have

Ẏ =

⎡

⎢
⎢
⎢
⎢
⎣

Ẏf
(

1 :
M
2

)

+ Ẏf
(
M
2
+ 1 : M

)

j
(

Ẏf
(

1 :
M
2

)

− Ẏf
(
M
2
+ 1 : M

))

⎤

⎥
⎥
⎥
⎥
⎦
∈ RM× 1 (18)

X =

⎡

⎢
⎢
⎢
⎢
⎣

Xf
(

1 :
M
2

)

+ Xf
(
M
2
+ 1 : M

)

j
(

Xf
(

1 :
M
2

)

− Xf
(
M
2
+ 1 : M

))

⎤

⎥
⎥
⎥
⎥
⎦
∈ RM× (R+RK+K) (19)

where j =
̅̅̅̅̅̅̅
− 1

√
, (m : n) represent the elements from the m-th row to the

n-th row of the matrix. Replace the observation and design matrices in
(17) with (18–19), and we have:

Ẏ = Xθ + Ξ (20)

where Ξ is the noise vector corresponding to the elementary trans-
formation of (17). In (20), the dimensions of the matrices and vectors
have not changed, but the elements are no longer complex numbers, but
real numbers.

Fig. 6. Complex to real number in this regression.

Table 1
Prior distribution of parameters.

Model parameter Prior distribution

Connectivity
parameters p(θ) = N (θ; μ0,Σ0) =

1
̅̅̅̅̅̅̅̅̅̅̅̅

(2π)D
√ exp

(

−
1
2
(θ − μ0)

TΣ− 1
0 (θ −

μ0)
)

Noise accuracy
p(τ) = Gamma(τ; α0,β0) =

βα0
0

Γ(α0)
τα0 − 1
i exp( − β0τ)

Binary random
variable

p(ζi) = Bern
(
ζi; pi0

)
=
(
pi0
)ζi ( 1 − pi0

)1− ζi

Table 2
Parameters in the prior distributions.

Parameter Description Parameter Description

μ0 Mean of a Gaussian
distribution

β0 Rate parameter of the
Gamma distribution

Σ0 Covariance of Gaussian
distribution

τi Noise accuracy of the i-th
connectivity parameter

α0 Shape parameter of the
Gamma distribution

Γ Gamma function

D The number of incoming
connections and driver
inputs into the region

pi0 The probability of the Bern
distribution for the ith
connectivity parameter

Note: The recommended settings for the Gamma distribution parameters α0 and
β0 are 2 and 1.
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4.5. Sparse variational Bayesian inference

Once the linear regression equation is established, we use the sparse
variational Bayes method to solve for the model parameters. If the
variational distribution of the model parameters is denoted as q(⋅), we
continuously optimize it to approximate the true posterior distribution.

We assume the following prior information to build the model: (i) To
ensure that the required model parameters exhibit sparsity, we intro-
duce sparse constraints based on the method in reference (Frässle et al.,
2018), using the binary random variable ζi for the i-th connectivity
parameter as the feature selector in the likelihood function. Its prior
follows a Bernoulli distribution with probability pi0. (ii) The prior of the
neural connectivity parameter θ follows a Gaussian distribution with
mean μ0 and covariance matrix Σ0. (iii) The prior of the precision
parameter τ for the noise Ξ follows a Gamma distribution with param-
eters α0 and β0. Table 2 presents the prior distributions of the model
parameters involved in this algorithm, and Table 1 explains the pa-
rameters listed in Table 2. Additionally, it is important to explain the
Bernoulli distribution probability pi0, which is the prior probability of
the existence of a connectivity parameter. When performing model
regression using the GSD, the sparsity of the brain functional network is
encoded by setting different values for pi0. This allows some connections
to be eliminated, so that the scheme only needs to estimate the con-
nectivity from the Markov blanket of each node. During the model
inversion, the computational load can be gradually reduced as some
effective connections are removed.

Since the model regression is performed under the mean field theory
(Højen-Sørensen et al., 2002), the model parameters entering different
regions are independent of each other and the model parameters of each
brain region can be solved independently. Therefore, the posterior dis-
tribution of the model parameters in a single brain region is

p(θ, τ, ζ|Ẏ,X)∝p(Ẏ|X, θ, τ,S)p(θ)p(τ)
∏D

i=1
p(ζi) (21)

where

p(Ẏ|X, θ, τ,S) = N
(
Ẏ;XSθ, τ− 1IN×N

)

S = diag([ζ1, ζ2,…, ζR, ζR+1,…, ζR+K]) is a set of binary random var-
iables, which encode the network structure as a sparse term,

ζi ∈ {0,1}.
Since (21) does not necessarily have a closed solution, we use the

variational distribution q(⋅) to make an approximate estimate of the
posterior distribution of θ, τ and ζi, and assume that the above param-
eters are independent of each other, then the approximate posterior
distribution of (21) is

q(θ, τ, ζ|Ẏ,X) ≈ q(θ|Ẏ,X)q(τ|Ẏ,X)
∏D

i=1
q(ζi|Ẏ,X) (22)

Here, the variational distribution q(⋅) can be specified as the conju-
gate distribution of the prior distribution of the corresponding
parameter.

Within the framework of factorization (22), the variational update
equations for q(θ|Ẏ,X), q(τ|Ẏ,X), and q(ζi|Ẏ,X) can be derived using the
variational Bayes. The optimal posterior distribution is obtained by
iterating the update equations until convergence. The optimization
condition is to maximize the negative (variational) free energy, which
for a single region is expressed as the sum of the expected energy of the
system (the logarithm of the joint distribution) and the entropy of q
under the variational density. Due to space constraints, we provide only
the final iteration scheme of the variational update equations and the
expression of the negative free energy for a single region in Tables 3 and
4. For a detailed derivation, please refer to reference (Bishop and Nas-
rabadi, 2006).

4.6. Hyperparameter optimization

In variational inference, selecting hyperparameters such as the cutoff
frequencies s and η, the prior mean of the connectivity parameter μ0, and
the Bernoulli probability pi0 is crucial for performance. This section de-
termines the hyperparameters by optimizing a cost function. This

Table 3
Final iteration scheme.

Parameter Iterative formula

Covariance in
Gaussian
distribution

Σθ|Ẏ =
(

ατ|Ẏ
βτ|Ẏ

(
Pζ|ẎX

TXPζ|Ẏ +
(
XTX

)
∘
(
Pζ|Ẏ − P2ζ|Ẏ

))
+ Σ− 1

0

)− 1

Statistics V = XTẎ
Statistics W = XTX
Mean in Gaussian
distribution μθ|Ẏ = Σθ|Ẏ

(
ατ|Ẏ
βτ|Ẏ

Pζ|ẎX
TẎ + Σ− 1

0 μ0

)

Shape parameter of
the Gamma
distribution

ατ|Ẏ = α0 +
N
2

Rate parameter of
the Gamma
distribution

βτ|Ẏ = β0 +
1
2

((
Ẏ − XPζ|Ẏμθ|Ẏ

)T(
Ẏ − XPζ|Ẏμθ|Ẏ

)
+

tr
(
Pζ|ẎX

TXPζ|ẎΣθ|Ẏ
))

⋯+
1
2

(
μTθ|Ẏ

((
XTX

)
∘
(
Pζ|Ẏ −

P2ζ|Ẏ
))

μθ|Ẏ + tr
(((

XTX
)
∘
(
Pζ|Ẏ − P2ζ|Ẏ

))
Σθ|Ẏ

))

Parameters of the
Bernoulli prior

piζ|Ẏ =
1

1+ exp
(
− gi
)

Statistics gi =
ατ|Ẏ
βτ|Ẏ

μiθ|ẎVi −
ατ|Ẏ
2βτ|Ẏ

((
μiθ|Ẏ

)2
Wii +

2μiθ|Ẏ
∑

j∕=i
piζ|Ẏμjθ|ẎWij

)
−

ατ|Ẏ

2βτ|Ẏ

(
WiiΣii

θ|Ẏ +

2
∑

j∕=i
pjζ|ẎWijΣij

θ|Ẏ

)
+ ln

(
pi0

1 − pi0

)

Note: Symbol ∘ represents the corresponding multiplication of the elements in
two matrices, tr is the trace of the matrix; μθ|Ẏ represents the mean μ of the

variational distribution q(θ) given Ẏ, and the other symbols Σθ|Ẏ , ατ|Ẏ and βτ|Ẏ
are expressed in a similar way; Pζ|Ẏ represents the posterior probability of the

variational distribution q(ζ) given Ẏ.

Table 4
Expressions for the components of negative free energy.

Component Expression

Expectation of the
likelihood

〈lnp(θ, τ, ζ|Ẏ)〉q(θ,τ,ζ) = −
N
2
ln2π +

N
2

(
G
(
ατ|Ẏ

)
− lnβτ|Ẏ

)
−

ατ|Ẏ
2βτ|Ẏ

((
Ẏ − XPζ|Ẏμθ|Ẏ

)T(
Ẏ − XPζ|Ẏμθ|Ẏ

)
−

tr
(
Pζ|ẎWPζ|ẎΣθ|Ẏ

))
−

ατ|Ẏ
2βτ|Ẏ

(
μTθ|ẎW∘

(
Pζ|Ẏ −

(
Pζ|Ẏ

)2)μθ|Ẏ −

tr
(
W∘
(
Pζ|Ẏ −

(
Pζ|Ẏ

)2)Σθ|Ẏ
))

Expectation of the
prior on θ

〈lnp(θ)〉q(θ) = −
D
2
ln2π −

1
2
ln|Σ0 | −

1
2

(
μθ|Ẏ − μ0

)T
Σ− 1
0

(
μθ|Ẏ − μ0

)
−

1
2
tr
(
Σ− 1
0 Σθ|Ẏ

)

Expectation of the
prior on τ

〈lnp(τ)〉q(τ) = α0lnβ0 − lnΓ(α0)+ (α0 − 1)
(
G
(
ατ|Ẏ

)
−

lnβτ|Ẏ

)
− β0

ατ|Ẏ
βτ|Ẏ

Expectation of the
prior on ζi

〈lnp(ζi)〉q(ζi) = ln
(
1 − pi0

)
+ piζ|Ẏln

pi0
1 − pi0

Entropy of θ
− 〈lnq(θ)〉q(θ) =

D
2
(1 + ln2π)+ 1

2
ln
⃒
⃒Σθ|Ẏ

⃒
⃒

Entropy of τ − 〈lnq(τ)〉q(τ) = ατ|Ẏ − lnβτ|Ẏ + lnΓ
(
ατ|Ẏ

)
−
(
ατ|Ẏ −

1
)
G
(
ατ|Ẏ

)

Entropy of ζi − 〈lnq(ζi)〉q(ζi) = − piζ|Ẏlnp
i
ζ|Ẏ −

(
1 − piζ|Ẏ

)
ln
(
1 − piζ|Ẏ

)

Note: 〈⋅〉q(⋅) represents the expectation of variational distribution q(⋅), G is the
digamma function.
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objective function replaces observed data with model-generated data in
a way that maximizes both the evidence or marginal likelihood of the
generative model and the expected information gain provided by the

data selection.
Let the hyperparameter vector be Θ = 〈s, η, μ0, p0〉, where μ0 and p0

represent the mean and Bernoulli probability of the i-th connectivity
parameter (the same value is used for all i, so i is omitted). The optimal
hyperparameters are obtained by

Θ∗ = argmin
Θ

‖ yg − f (Xg θ̂
Θ
) ‖2 (23)

where θ̂
Θ

represents the estimate of θ obtained using the hyper-
parameter Θ, and f is the inverse Fourier transform function.

Compared with the traditional cost function method based on
maximum a posteriori probability and negative free energy, the cost
function of this paper does not involve the observed value y =

[
yn
]
, but

uses the output yg = [γn] of GLM, which can avoid introducing the error
in yn into the cost function. In addition, it is noted that yg = [γn] is used in
the cost function instead of its derivative ẏg = [γ̇n]. We will explain it as
follows, as shown in Fig. 7. Based on the convolutional model, (11) can
be transformed into

γ̇n =
(
U̇T

t ⊗ ht
)
β (24)

Since Ut is an exogenous stimulus and can be regarded as a step
signal, it has the same period as its differential U̇t, so the two are similar
in some frequencies in the spectrum, as shown in Fig. 7. From (23), it can
be seen that yg and ẏg are also similar in the spectrum, so the cost
function in (23) directly replaces its differential with the GLM output.

5. Experimental setup

To evaluate the proposed algorithm, we used three datasets: one
simulated dataset and two measured datasets. In the simulated dataset,
we primarily focused on performance metrics such as specificity,
sensitivity, and precision. The above performance metrics were chosen
to reflect various aspects of parameter recovery; namely, different
measures of goodness of fit and accuracy. However, because we are
using variational procedures, we also have the important opportunity to
assess the bounds on model evidence (i.e., variational free energy). This
is essential for Bayesian model comparison; i.e., inference about models

Fig. 7. Cost function for haperparameter optimization.

Fig. 8. Simulation data: S50 and S20 network based on the small-world ar-
chitecture of the human brain (Lin Tiger et al., 2020; FRÄSSLE et al., 2018).
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as opposed to the parameters of any given model. Therefore, we also
present results in the measured datasets that reflect the model selection
capability of GSD. Detailed descriptions of these datasets are provided
below.

5.1. Simulation data

The simulation data represents a brain function network structure
based on the small-world architecture of the human brain. Following the
research from reference (Smith et al., 2011), we constructed two net-
works: S50 and S20, as shown in Fig. 8. The S50 network comprises 10

subnetworks, each containing 5 nodes with unidirectional connections.
The nodes receive experimental stimuli, and the subnetworks are
interconnected through one node. The S20 network is a simplified
version of the S50, consisting of only 4 subnetworks, thus involving 20
nodes in total. The construction of the networks follows the method
outlined in reference (Frässle et al., 2018), achieving an actual sparsity
of approximately 0.05. The simulation data is not generated by GSD, but
rather through a method that generates synthetic fMRI data under a
given signal-to-noise ratio (SNR) with a fixed hemodynamic convolution
kernel.

The parameters in the tested algorithms are set as follows:

• sparse rDCM (Frässle et al., 2018): The binary indicator variables for
the experimental stimulus are determined by the designed stimulus
input pattern. For non-zero positions in the C matrix, the Bernoulli
prior probability pi0 is set to 1, while the rest are set to 0. For positions
in the A matrix, pi0 is set to 0.15, except for self-connections, which
are set to 1. The initial values for μ0 and Σ0 use the standard prior
values of DCM10 in SPM8 (version R4290). The cutoff frequency for
the frequency domain filter is calculated using the filter in the
algorithm.

• GSD: This is the algorithm proposed in this paper. Its parameters pi0,
μ0, Σ0 and filter parameters match those of sparse rDCM. Other
parameter settings are described in Section 4.

• DCM: This is the traditional DCM method proposed in the literature
(Friston et al., 2003). All parameters are set using the DCM12.5
settings of the SPM12 software (Revision 7771). The software
download address is https://www.fil.ion.ucl.ac.uk/spm/.

In this simulation data, TR is set to 0.5, and the SNR is set to 1, 3, 5,
10, and 100. It should be noted that due to the high computational
complexity of DCM in model regression, if DCM is used to invert the S50
network in the experimental platform (operating system: Windows 11,
processor: AMD Ryzen 5 5600H with Radeon Graphics, RAM: 16.0 GB,
simulation software: MATLAB R2020a), memory overflow will occur.
Therefore, in the S50 network, only the regression results of GSD and
sparse rDCM are given. In the S20 network, due to the small number of
nodes and relatively small amount of calculation, the analysis results of
DCM are given.

In the simulation data, the TR is set to 0.5 s, and the SNR varies
between 1, 3, 5, 10, and 100. Note that due to the high computational
complexity of model regression with DCM, attempting to regress the S50
network on our experimental platform (Windows 11, AMD Ryzen 5
5600H processor with Radeon Graphics, 16.0 GB RAM, MATLAB

Fig. 9. Measured data 1: Two connectivity modes in the attention and mo-
tion dataset.

Fig. 10. Measured data 2: three connectivity models in the face fMRI dataset.
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R2020a) results in memory overflow. Consequently, we provide
regression results for only GSD and sparse rDCM in the S50 network. For
the S20 network, due to its smaller size and reduced computational

demands, we include analysis results from DCM as well.
The performance metrics include the model’s regression speed,

sensitivity, specificity, precision, and estimation error. Sensitivity is

Fig. 11. Heat maps for the estimated and expected connections of GSD and sparse rDCM when the threshold is 10− 2 (A matrix of S50 network).

Fig. 12. When the threshold is 10− 2, the fitting curve of GSD and sparse rDCM (the first brain region and the eighth brain region).

Fig. 13. Performance of GSD and sparse rDCM for S50 network regression
when the threshold is 10− 5.

Fig. 14. Performance of GSD and sparse rDCM for S50 network regression
when the threshold is 10− 3.
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defined as:

Sensitivity =
Ntp

Np
(25)

where Ntp is the number of true positives obtained by regression (the
expected value of the parameter is non-zero, and the regressed value of
the parameter is also non-zero. If the absolute value of the regressed
value is greater than the threshold, it is considered non-zero. This
experiment adopts multiple thresholds, including 10− 5, 10− 3, and 10− 2),
and Np is the total number of positives (the expected value of the
parameter is non-zero). Specificity is defined as:

Specificity =
Ntn

Nn
(26)

where Ntn is the number of true negatives obtained by regression (the
expected value of the parameter is zero, and the inverted value of the
parameter is also zero), and Nn is the total number of negatives (the
expected value of the parameter is zero). The precision is defined as:

Precision =
Ntp

Ntp + Nfp
(27)

where Nfp is the number of false positives obtained from the regression
(the expected value of the parameter is zero, and the inverted value of
the parameter is non-zero). The estimation error is defined as:

Error =
‖ θ̂ − θ‖2
‖ θ‖2

(28)

where θ̂ is the parameter estimate and ‖ ⋅‖2 represents the Euclidean

norm.
It is important to note that both GSD and sparse rDCM introduce

sparse terms during model regression. The use of a threshold to deter-
mine whether the regression value is non-zero is a step in the regression
process. Unless otherwise specified, the regression results of GSD and
sparse rDCM use a default threshold of 10− 5.

5.2. Measured data 1: attention and motion dataset

The attention and motion dataset is commonly used to study the
modulatory effects of attention on visual pathway connectivity. DCM
can be employed to analyze the modulatory effects. The dataset is
available at http://www.fil.ion.ucl.ac.uk/spm/data/attention/, with
detailed information found in references (Büchel and Friston, 1991;
Friston and Frith, 1995). The data has been preprocessed and includes
smoothed, spatially normalized, realigned, and slice-time corrected
functional images, as well as spatially normalized structural images.

The data acquisition experiment included 4 conditions: (I) fixation
(F); (II) stationary point (S); (III) no attention, i.e., moving point but not
requiring attention (N); (IV) attention, i.e., moving point requiring
attention (A). Data was acquired using a 2 Tesla MRI scanner (Siemens,
Erlangen), capturing 360 T2*-weighted functional images using a
gradient echo-planar imaging (EPI) sequence (TR = 3220 ms, TE = 40
ms, voxel size 3 × 3 × 3 mm³).

To identify activated regions and extract the BOLD signal, we

Fig. 15. Performance of GSD and sparse rDCM for S50 network regression
when the threshold is 10− 2.

Fig. 16. Performance of GSD, sparse rDCM and DCM for S20 network regression when the threshold is 10− 2 and SNR is 3.

Fig. 17. Regression time for GSD, sparse rDCM and DCM.
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performed a GLM analysis, recombining the above four experimental
conditions to obtain three regressors: (1) photic perception (S, N, and A),
(2) motion (N and A), and (3) attention (A). Based on the results of the
GLM analysis, we extracted BOLD signals from three ROIs: the primary
visual cortex (V1), the motion-sensitive area (V5), and the attention-
sensitive superior parietal cortex (SPC), from a small sphere centered
at [0, − 93, 18], [− 36, − 87, − 3], and [0, − 93, 18] with a radius of 8 mm.

According to reference (Büchel and Friston, 1991), the connectivity
model of DCM is shown in Fig. 9(a), where the endogenous connectivity
(A matrix) includes the self-connection of three brain regions, the for-
ward connectivity (SPC to V5) and the backward connectivity (V5 to
SPC) between SPC and V5, and the forward connectivity (V1 to V5) and

backward connectivity (V5 to V1) between V1 and V5; the input mod-
ulation (B matrix) includes motion modulates the endogenous connec-
tivity from V1 to V5, attention modulates the endogenous connectivity
from SPC to V5; in terms of driving input (C matrix), photic stimulation
drives the activity in V1. In this experiment, GSD and traditional DCM
adopted the model of Fig. 9(a), while sparse rDCM adopted the model of
Fig. 9(b) because it was impossible to estimate the B matrix. The only
difference between the two models is whether there is an input
modulation.

The parameters in the tested algorithms are set as follows:

• sparse rDCM: The initial values μ0 and Σ0 are set using the standard
prior values used by DCM10 in SPM8; the filter cutoff frequency is
calculated by the algorithm itself; the Bernoulli prior probability pi0 is
obtained by maximizing the negative free energy, specifically, at the
non-zero position of the C matrix, pi0 is set to 0.5, and the rest are 0;
the value of pi0 corresponding to each position in theAmatrix is set to
0.5, except for self-connection which is set to 1.

• GSD: The setting of pi0 is optimized via (23), specifically, the pi0 at the
non-zero positions of the C matrix and the B matrix is set to 0.8, and
the rest are 0; the pi0 corresponding to each position in the A matrix,
except for the self-connection which is set to 1, the rest are all set to
0.8; the setting of Σ0 uses the standard prior value used by DCM10 in
SPM8; μ0 and the cutoff frequency in the frequency domain filtering
have two settings: (1) optimized via Eq.(23), which are 0.8 and 60
(high-pass cutoff frequency) respectively; (2) μ0 uses the standard
neural prior used by DCM10 in SPM8, and the cutoff frequency is
calculated by the sparse rDCM algorithm.

• DCM: All parameters adopt the settings of DCM12.5 of SPM12.

In the results of the measured data, in addition to showing the
regression results of each connectivity parameter in the models, we also
give the results of the fitting error, that is, the difference between the
fitted BOLD signal and the true BOLD signal. The fitted BOLD signals of
GSD and sparse rDCM are expressed as the inverse fourier digital
transform of the product of the neural connectivity parameters and the
design matrix, and the fitted BOLD signal of DCM is obtained by SPM12.

5.3. Measured data 2: face fMRI dataset

The face fMRI dataset is commonly used to study the face repetition
suppression (RS) effect (Lee et al., 2022; Ewbank et al., 2013). The data
can be accessed at https://www.openfmri.org/dataset/ds000117/, with
detailed information in reference (Wakeman and Henson, 2015). This
experiment selected fMRI data from 16 subjects, aged 23–37 years. Data
were collected using a 3 Tesla MRI scanner (Siemens, Erlangen). The
MPRAGE sequence was used to obtain T1-weighted structural images
with a resolution of 1× 1× 1 mm, and the EPI sequence (TR= 2000 ms,
TE= 30ms, flip angle= 78◦, voxel size ranging from 3× 3× 3.75mm to
3 × 3 × 4.05 mm) was used to obtain functional images. Each subject
participated in 9 experiments, and 210 functional images were collected
in each experimental run. The experiment included two conditions: (I)
repetition (initial stimulus, immediate repetition or delayed repetition),
and (II) different faces (familiar faces, unfamiliar faces or scrambled
faces).

After smoothing, spatially normalizing, realigning, slice time
correction, and spatial normalization, we performed a GLM analysis, in
which 9 regressors were defined: (1) initial familiar face, (2) immedi-
ately repeated familiar face, (3) delayed repeated familiar face, (4)
initial unfamiliar face, (5) immediately repeated unfamiliar face, (6)
delayed repeated unfamiliar face, (7) initial scrambled face, (8) imme-
diately repeated scrambled face, and (9) delayed repeated scrambled
face. The results were basically consistent with the literature (Lee et al.,
2022). This experiment mainly focused on the right occipital face area
(OFA) and right fusiform face area (FFA) because these two areas

Fig. 18. Regression results for GSD, DCM and sparse rDCM.
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showed higher activation levels than other areas. We defined two small
spheres with centers of [39, − 82, − 10] and [42, − 46, − 19] and a radius
of 10 mm, respectively, and extracted the corresponding BOLD signals
from them. Finally, we followed the method of (Lee et al., 2022) and
recoded the nine regressors defined in the above GLM into three
experimental effects: (1) all stimuli (contrast vector = [(Friston, 2011)
(Friston, 2011) (Friston, 2011) (Friston, 2011) (Friston, 2011) (Friston,
2011) (Friston, 2011) (Friston, 2011)], the order is the same as the order
of the regressors in the GLM), (2) immediate repetition (contrast vector
= [0 1 0 0 1 0 0 1 0]) and (3) delayed repetition (contrast vector= [0 0 1
0 0 1 0 0 1]).

For the analysis of DCM, we assumed three connectivity patterns, as
shown in Fig. 10. In these patterns, the endogenous connectivity is a
fully connected network, and the driving input allows all stimuli to
directly drive the activity of the brain region, so there are complete A
matrices and Cmatrices. The input modulation (Bmatrix) considers: (a)
both immediate repetition and delayed repetition modulate the self-
connection of FFA, and delayed repetition and immediate repetition
also modulate the forward connectivity (OFA to FFA) and backward
connectivity (FFA to OFA) between OFA and FFA respectively; (b) both
immediate repetition and delayed repetition modulate the backward
connectivity between OFA and FFA, (c) immediate repetition and
delayed repetition do not have any modulation effect.

The parameters in the tested algorithms are set as follows:

• GSD: The setting of pi0 is optimized via (23). Specifically, at the non-
zero positions of the Cmatrix and the Bmatrix, pi0 is set to 0.85, and

the rest are 0. The values of pi0 corresponding to each position in the
Amatrix are all set to 0.85 except for the self-connection which is set
to 1. The setting of Σ0 uses the standard prior value used by DCM10
in SPM8. The cutoff frequency in the frequency domain filter and μ0
are optimized via (23), which are 0.1 and 400 (high-pass cutoff
frequency) respectively.

• DCM: All parameters are set using SPM12′s DCM12.5.

Note that the sparse rDCM was not tested on this dataset because it
cannot regress the B matrix, which is essential for this analysis.

Finally, we used GSD and DCM to regress the three connectivity
models shown in Fig. 10. After selecting the best model, we summarized
and analyzed the regression results for the 16 subjects.

6. Result analysis

6.1. Simulation data

The results presented in this section are averages of 20 independent
calculations, with the specific numerical values provided in the sup-
plementary materials. Figs. 11 and 12 illustrate the estimated heat maps
and fitted curves of GSD and sparse rDCM for the S50 network with a
threshold of 10− 2. The fitted BOLD signals of GSD and sparse rDCM are
represented as the inverse Fourier digital transform of the product of the
neural connectivity parameters and the design matrix. Due to the
extensive number of brain regions involved in the simulation data, only
the fitted BOLD signals of two brain regions are displayed in Fig. 12.

Fig. 19. Fitting curve of GSD and DCM.

Fig. 20. GSD fitting error under two hyperparameter settings.
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From the estimated heat map and fitting curve, both algorithms exhibit
similar performance.

To further analyze the differences in regression performance,
Figs. 13–15 show the performance results of GSD and sparse rDCM for
regressing the S50 network at thresholds of 10− 5, 10− 3, and 10− 2. In
terms of specificity and sensitivity, the performance of both algorithms
is relatively close, except when SNR=1. However, in terms of precision,
the GSD algorithm consistently outperforms sparse rDCM at all SNR
values. Notably, when SNR=100, the precision of sparse rDCM de-
creases, while the precision of GSD continues to increase. Additionally,
as the threshold increases from 10− 5 to 10− 2, the precision of both al-
gorithms improves, with GSD maintaining higher precision than sparse
rDCM. It is also worth noting that the computation time of GSD is
significantly lower than that of sparse rDCM, approximately 1/3 of the
latter.

Fig. 16 displays the regression results of the DCM, GSD, and sparse
rDCM algorithms for the S20 network under SNR=3. As described in the
experimental setup section, DCM regression for 50 nodes exceeds the

memory capacity of the computing host used, so results are only pro-
vided for the S20 network. Since results under other SNR values are
similar, only those for SNR=3 are presented. From Fig. 16, it is evident
that the precision and specificity of DCM are lower than those of GSD
and sparse rDCM, and its computation time is significantly higher.
Additionally, although the specificity and other performance metrics of
the GSD algorithm are close to those of sparse rDCM, GSD’s computation
time remains lower, consistent with the S50 network results in Fig. 13.

6.2. Measured data 1: attention and motion dataset

The results presented here are averages of 20 independent calcula-
tions. Fig. 17 shows the regression time for the three models. GSD’s
regression time is<1 second, sparse rDCM’s is about 1–2 s, and DCM’s is
>12 s, with GSD being the fastest.

Fig. 18 shows the regression results of each connectivity parameter
in GSD, DCM, and sparse rDCM. For endogenous connections, all three
brain regions in the models exhibit self-connection. However, GSD and
DCM show excitation effects, while sparse rDCM shows inhibitory ef-
fects. Both GSD and DCM reveal forward (SPC to V5) and backward (V5
to SPC) connections between SPC and V5, whereas sparse rDCM only
shows backward connections. Neither DCM nor sparse rDCM show
connections between V1 and SPC, and the connectivity strength from V1
to SPC in GSD is only on the order of 10− 2, which can be considered
negligible. All three models identify the backward connectivity between
V1 and V5 (V5 to V1), while only DCM finds the forward connectivity
(V1 to V5), albeit at the order of 10− 2. Regarding input modulation, GSD
and DCM exhibit the same modulation effect, while sparse rDCM shows
none. For driving input, both GSD and DCM have photic stimulation
input in the V1 area, whereas sparse rDCM does not. Overall, GSD and
DCM yield similar regression results, while sparse rDCM differs signifi-
cantly, with smaller amplitudes.

Fig. 19 shows the fitting curves of GSD and DCM, which are close to
the true curves. Sparse rDCM’s fitting curve, being quite different from
the true curve, is not shown. Finally, Fig. 20 displays the fitting errors of
GSD under two hyperparameter optimization settings. The first uses
optimization method (23), and the second uses the sparse rDCMmethod.
The fitting errors in the three ROIs are smaller with the first method.

6.3. Measured data 2: face fMRI dataset

The results here are averages of 20 independent calculations for 16
subjects. Fig. 21(a) shows the relative model evidence for the three
connectivity models, calculated by negative free energy, as per SPM12.
The relative model evidence for eachmodel is the average of 16 subjects,

Fig. 21. Relative model evidence and model selection of GSD and DCM.

Fig. 22. Regression time of GSD and DCM.

Fig. 23. The probability of the existence of endogenous connections (A matrix)
at different thresholds (a) The probability of delayed repetition modulation (B1

matrix) at different thresholds (b) The probability of immediate repetition
modulation (B2 matrix) at different thresholds.
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with the three connectivity models shown in Fig. 10. Both GSD and DCM
select model (a) as the winning model. Fig. 22 demonstrates that GSD’s
computation time for the three models is much shorter than DCM’s.
Fig. 21(b) shows the final regression results. GSD and DCM both find
that immediate and delayed repetition modulate the self-connection of
FFA, and modulate the forward and backward connections between OFA
and FFA, respectively. This conclusion is based on the probability of
connectivity existence exceeding 0.95 for 16 subjects.

Figs. 23–25 display the probability of each connectivity parameter
existing in the winning model of GSD and DCM at various thresholds
(10− 5, 10− 3, 10− 2). Regardless of the threshold, the probabilities for

GSD and DCM remain high, except for the probability of connectivity
B22 in the immediate repetition at the 10− 2 threshold, which decreases.

7. Discussion

In this paper, we propose an algorithm that infers effective connec-
tivity in more brain regions by combining sparse variational inference,
converting complex-number equations to real-number ones, GLM
filtering, frequency domain filtering, and other processing methods. The
goal is to balance model interpretability and computational complexity,
thereby improving both the computational speed and regression per-
formance of frequency domain DCM. Testing on one set of simulation
data and two sets of measured data shows that the proposed GSD al-
gorithm not only reduces computational complexity but also demon-
strates strong model interpretability.

From the experimental results, the computational speed of the GSD
algorithm has significantly improved. One reason is that it performs
real-number operations on the complex linear regression equation dur-
ing parameter estimation, avoiding redundant complex operations
typical of other frequency domain DCMs. Another reason is the convo-
lution of the HRF on both sides of the original DCM equation, trans-
forming the original model into a linear regression. This eliminates the
need for GSD to estimate hidden neuron activity. In the simulation data
set, GSD was compared with a sparse rDCM capable of inferring effective
connectivity in large-scale brain networks. The regression speed of GSD
is approximately 70 % faster than sparse rDCM and nearly 98 % faster
than traditional DCM under various SNR or threshold settings. In the
attention and motion dataset, GSD’s regression speed is about 50 %
faster than sparse rDCM and about 95 % faster than traditional DCM. In
the face dataset, GSD’s regression speed is about 90 % faster than
traditional DCM. Although the improvement in regression speed for

Fig. 24. The existence probability of input modulation at different thresholds.

Fig. 25. The existence probability of driving input (C matrix) at
different thresholds.
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measured data is not as large as in the simulation data, this indicates that
GSD’s speed advantage becomes more pronounced with an increasing
number of brain regions, showing its potential for large-scale brain
network research.

In terms of model interpretability, GSD did not sacrifice performance
to improve computational speed. The traditional DCM algorithm was
used as a baseline to illustrate GSD’s efficiency. In the simulation data,
we synthesized S50 and S20 network data. The S20 network, with fewer
brain regions, allowed the traditional DCM algorithm to be tested, while
the S50 network’s large computational workload meant traditional DCM
results were not provided. Results for the S50 network show that GSD
maintains high specificity and sensitivity, accurately regressing the
network structure. For the S20 network, GSD improves specificity and
precision compared to traditional DCM and has relatively low estima-
tion error. In both simulations, GSD outperforms sparse rDCM in esti-
mation error and precision.

Although GSD showed efficient regression speed and strong model
interpretability in simulation data, the simulation did not account for
input modulation, so further testing was done on two groups of
measured data affected by input modulation. In the attention and mo-
tion data, GSD’s regression results for endogenous connectivity (A ma-
trix) and input modulation (B matrix) were consistent with traditional
DCM, showing the same effects (excitation or inhibition) and similar
connectivity strengths. GSD and DCM differ slightly in endogenous
connectivity details, but connectivity strengths in these areas are low,
only reaching the order of 10− 2. Sparse rDCM, on the other hand, deletes
most connections except self-connection and shows lower retained
connectivity strength, likely due to its omission of input modulation to
increase regression speed, thereby reducing model interpretability.

In the face data experiment, we focused on the effect of input mod-
ulation on brain area connectivity. Since sparse rDCM does not account
for this effect, it was excluded from the comparison. From the model
selection results, both GSD and traditional DCM identified the same
winning models, and the analysis results for 16 subjects were consistent.
The results show that both immediate and delayed repetition modulate
the self-connection of FFA. Additionally, delayed repetition and imme-
diate repetition modulate the forward and backward connectivity be-
tween OFA and FFA, respectively. When the threshold is 10− 5, the
probability of these connections existing is almost 1. Moreover, the
analysis results are consistent with the findings of the literature (Lee
et al., 2022) from which the data is derived. Notably, the analysis
method in (Lee et al., 2022) combines traditional DCM with the new
parametric empirical Bayes (PEB) method, further validating GSD’s
regression reliability. It should be noted that literature (Lee et al., 2022)
focused on four effects (face perception, immediate repetition, delayed
repetition, and face recognition) while studying two ROIs (OFA and
FFA). In contrast, this paper’s experiment focuses on the two repetition
effects because our primary interest is exploring the face RS effect, not
the face perception or recognition effect. The regression results for face
perception are more easily influenced by the number or position of
extracted voxels in the ROI.

GLM filtering and hyperparameter optimization also play crucial
roles in GSD’s efficiency. The experimental results show that these
methods significantly improve GSD’s performance. In the S50 network,
GSD maintains high sensitivity and specificity while achieving high
regression speed. Its estimation error and precision remain high across
various signal-to-noise ratio (SNR) environments, demonstrating strong
noise resistance. Specifically, in a high SNR environment (SNR=100),
GSD’s precision is better. Analysis shows that GSD’s precision is pro-
portional to the SNR, which aligns with expected norms. In contrast,
sparse rDCM’s precision drops sharply at SNR=100, showing irregular
fluctuations. This phenomenon, also observed in literature (Frässle
et al., 2018), suggests that sparse rDCM’s filtering technology fails in
high SNR environments, highlighting GSD’s robustness due to GLM
filtering and parameter optimization.

For the attention and motion data, hyperparameters were set using
optimization functions and empirical methods. Results showed that
optimization functions resulted in lower fitting errors, indicating that
empirical methods, being relatively fixed, lack flexibility for different
situations. Specifically, empirical methods only perform low-pass
filtering, whereas BOLD signal noise exists across various frequency
bands. The limitation makes it difficult to filter out some noise effec-
tively, affecting both fitting results and model selection. In the face
dataset, while both GSD and traditional DCM selected the same winning
model, the relative model evidence for GSD’s winning model was
significantly different from other models, unlike traditional DCM. This
suggests that GSD may have a stronger model selection ability.

In summary, based on the above experimental results, the GSD al-
gorithm proposed in this paper improves calculation speed in brain
functional network regression without sacrificing model interpret-
ability, achieving a balance between model complexity and interpret-
ability. GSD effectively analyzes brain networks affected by input
modulation and processes data from large-scale networks and complex
experimental designs efficiently.

Despite GSD’s strong performance in two measured datasets, there is
room for further optimization. First, GSD does not process random ef-
fects in multi-subject analysis, and combining it with PEB to create a
hierarchical model, as in reference (Lee et al., 2022), could improve its
performance. Second, GSD could adopt a more flexible approach to
setting the prior existence probability of brain region connections, as the
sparsity of effective connectivity varies between regions. Finally, while
GSD is inclined to analyze task-state fMRI data, it can theoretically
analyze resting-state data, which can be explored further.
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Appendix

A.1 Derivation of the linear regression equation
Below we give the specific derivation process of converting the neural state equation into the linear regression equation of the observed state. In

particular, the approximate processing process of the bilinear term (B matrix) is given.
Convolution of HRF on both sides of (1) gives:

ẏt = Aψ t +
∑K

j=1
ujtB

jZt ⊗ ht + CUt ⊗ ht (A1–1)

From GLM (Worsley and Friston, 1995), i.e. (11), introducing the brain region symbol r, we can get
[
γ(1)t γ(2)t …γ(R)t

]
= xgt

[
β(1)β(2)…β(R)] =

(
UT

t ⊗ ht
)
b (A1–2)

where b =
[
β(1)β(2) …β(R)]. Then using the convolution model, we can get:

[
γ(1)t γ(2)t …γ(R)t

]
= ZTt ⊗ ht (A1–3)

From Eq.(A1–2) and Eq.(A1–3), we can know

Zt = bTUt (A1–3A)

Substituting Eq.(A1–3) into the third term on the left side of Eq.(A1–1), we have

∑K

j=1
Bjyʹj

t =
∑K

j=1
ujtB

jbTUt ⊗ ht

Then

yʹj
t = ujtb

TUt ⊗ ht

A.2 Transformation process of linear regression equation after GLM filtering
In the following, we explain in detail the differences and connections between the linear regression equation before and after GLM filtering.
Substituting the Fourier transform of (12) into the left side of (10), we have:

Ẏo
= Ẏg

+ Ξ̇ (A2–1)

where Ẏg
= [Γ̇n] ∈ CN× 1, Γ̇n is the Fourier transform of the GLM output derivative γ̇n; Ξ̇ = [Ξ̇n] ∈ CN× 1, Ξ̇n is the Fourier transform of the derivative of

ξn. Substituting the Fourier transform of (12) into the right side of (10), we have:

Xoθ = Xgθ + Ξo (A2–2)

where

Xg =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ψg
1 Ψg

2 … Ψg
N

Yʹ1
1 Yʹ1

2 … Yʹ1
N

Yʹ2
1 Yʹ2

2 … Yʹ2
N

⋮ ⋮ … ⋮
YʹK

1 YʹK
2 … YʹK

N

Yʹ́
1 Yʹ́

2 … Yʹ́
N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

∈ CN×(R+RK+K) (A2–3)
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Ψg
n =

[
Γ(r)
n
]
∈ CR× 1

Ξo =

⎡

⎢
⎢
⎢
⎢
⎣

Ξ1 Ξ2 … ΞN
0 0 … 0
0 0 … 0
⋮ ⋮ … ⋮
0 0 … 0

⎤

⎥
⎥
⎥
⎥
⎦

T

θ ∈ C(R+RK+K) × 1 (A2–3A)

Ξn =
[
Ξ(r)
n
]
∈ CR× 1

Ξ(r)
n is the fourier transform of the derivative of ξ(r)n . Since Eq.(A2–1) and Eq.(A2–2) are equal, then

Ẏg
= Xgθ + Ξg

where Ξg = Ξo − Ξ̇.
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